Let V be a vector space, and T :V →V a linear transformation such that T(5v1 + 302) = 40, – 402 and T(301 + 202) = 201 + 579. Then V2, T(3,) T(v2) T(201 – 202) =

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Let \( V \) be a vector space, and \( T : V \rightarrow V \) a linear transformation such that 

\[ T(5\vec{v}_1 + 3\vec{v}_2) = 4\vec{v}_1 - 4\vec{v}_2 \]

and 

\[ T(3\vec{v}_1 + 2\vec{v}_2) = 2\vec{v}_1 + 5\vec{v}_2. \]

Then

\[
T(\vec{v}_1) = \, \underline{\hspace{3em}} \, \vec{v}_1 + \underline{\hspace{3em}} \, \vec{v}_2 
\]

\[
T(\vec{v}_2) = \, \underline{\hspace{3em}} \, \vec{v}_1 + \underline{\hspace{3em}} \, \vec{v}_2 
\]

\[
T(2\vec{v}_1 - 2\vec{v}_2) = \, \underline{\hspace{3em}} \, \vec{v}_1 + \underline{\hspace{3em}} \, \vec{v}_2.
\]
Transcribed Image Text:Let \( V \) be a vector space, and \( T : V \rightarrow V \) a linear transformation such that \[ T(5\vec{v}_1 + 3\vec{v}_2) = 4\vec{v}_1 - 4\vec{v}_2 \] and \[ T(3\vec{v}_1 + 2\vec{v}_2) = 2\vec{v}_1 + 5\vec{v}_2. \] Then \[ T(\vec{v}_1) = \, \underline{\hspace{3em}} \, \vec{v}_1 + \underline{\hspace{3em}} \, \vec{v}_2 \] \[ T(\vec{v}_2) = \, \underline{\hspace{3em}} \, \vec{v}_1 + \underline{\hspace{3em}} \, \vec{v}_2 \] \[ T(2\vec{v}_1 - 2\vec{v}_2) = \, \underline{\hspace{3em}} \, \vec{v}_1 + \underline{\hspace{3em}} \, \vec{v}_2. \]
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,