Let U1, U2, U3 – be the following subspaces of R4 U1={a, b, c, d) R4| 1b=с; a=d=0}; U2={(a, b, c, d) R4| a - b + 2c + 3d=0, -a +b - 2c - 3d=0}; U3= {a, b, c, d) R4| 1a – 2b – 1c - d=0, a + 2b + 0c + 2 d=0 }; Sub-Task 1. Find a basis and the dimension of U1. Sub-Task 2. Find a basis and the dimension of U2. Sub-Task 3. Find a basis and the dimension of U3.
Let U1, U2, U3 – be the following subspaces of R4 U1={a, b, c, d) R4| 1b=с; a=d=0}; U2={(a, b, c, d) R4| a - b + 2c + 3d=0, -a +b - 2c - 3d=0}; U3= {a, b, c, d) R4| 1a – 2b – 1c - d=0, a + 2b + 0c + 2 d=0 }; Sub-Task 1. Find a basis and the dimension of U1. Sub-Task 2. Find a basis and the dimension of U2. Sub-Task 3. Find a basis and the dimension of U3.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Let U1, U2, U3 – be the following subspaces of R4
U1={a, b, c, d) R4| 1b=с; a=d=0};
U2={(a, b, c, d) R4| a - b + 2c + 3d=0, -a +b - 2c - 3d=0};
U3= {a, b, c, d) R4| 1a – 2b – 1c - d=0, a + 2b + 0c + 2 d=0 };
Sub-Task 1. Find a basis and the dimension of U1.
Sub-Task 2. Find a basis and the dimension of U2.
Sub-Task 3. Find a basis and the dimension of U3.
Sub-Task 4. Whether R4=U1+U2, (provide a justification). Whether R4=U1 U2, (provide a justification).
Sub-Task 5. Whether R4=U1+U3, (provide a justification). Whether R4=U1 U3, (provide a justification).
Sub-Task 6. Whether R4=U2+U3, (provide a justification). Whether R4=U2 U3, (provide a justification).
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 5 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,