Advanced Engineering Mathematics
Advanced Engineering Mathematics
10th Edition
ISBN: 9780470458365
Author: Erwin Kreyszig
Publisher: Wiley, John & Sons, Incorporated
Bartleby Related Questions Icon

Related questions

Question
100%

SOLVE BOTH PLEASE!!! the cirlced one

6
+----
and v=
- 1
Let u =
6
Show that
a
k
How can it be shown that a vector b is in Span {u, v}?
Let b =
is in Span {u, v} for all a and k.
A. Determine if the system containing u, v, and b is consistent. If the system is consistent, then b is in Span {u, v}.
a
A
B. Determine if the system containing u, v, and b is consistent. If the system is consistent, b might be in
Span {u, v}.
C. Determine if the system containing u, v, and b is consistent. If the system is consistent, then b is not in
Span {u, v}.
D. Determine if the system containing u, v, and b is consistent. If the system is inconsistent, then b is in
Span {u, v}.
Find the augmented matrix u v b
b].
expand button
Transcribed Image Text:6 +---- and v= - 1 Let u = 6 Show that a k How can it be shown that a vector b is in Span {u, v}? Let b = is in Span {u, v} for all a and k. A. Determine if the system containing u, v, and b is consistent. If the system is consistent, then b is in Span {u, v}. a A B. Determine if the system containing u, v, and b is consistent. If the system is consistent, b might be in Span {u, v}. C. Determine if the system containing u, v, and b is consistent. If the system is consistent, then b is not in Span {u, v}. D. Determine if the system containing u, v, and b is consistent. If the system is inconsistent, then b is in Span {u, v}. Find the augmented matrix u v b b].
Let A =
1 0 -6
03-5
-59 4
and b =
9
-2. Denote the columns of A by a₁, a2, a3, and let W = Span {a₁, a2, ª3}.
- 29
a. Is b in {a₁, a₂, a3}? How many vectors are in {a₁, a2, a3}?
b. Is b in W? How many vectors are in W?
c. Show that a2 is in W. [Hint: Row operations are unnecessary.]
a. Is b in {a₁, a₂, a3}? Select the correct choice below and, if necessary, fill in the answer box(es) to complete your
choice.
A. No, b is not in (a₁, a2, aç} since b is not equal to a₁, a2, or a3.
B. Yes, b is in (a₁, a2, a3} since b = a
(Type a whole number.)
C. Yes, b is in {a₁, a2, a3} since, although b is not equal to a₁, a2, or a3, it can be expressed as a linear
combination of them. In particular, b = (a₁ + a₂ + ([ аз.
(Simplify your answers.)
D. No, b is not in {a₁, a2, a3} since it cannot be generated by a linear combination of a₁, №₂, and аз.
expand button
Transcribed Image Text:Let A = 1 0 -6 03-5 -59 4 and b = 9 -2. Denote the columns of A by a₁, a2, a3, and let W = Span {a₁, a2, ª3}. - 29 a. Is b in {a₁, a₂, a3}? How many vectors are in {a₁, a2, a3}? b. Is b in W? How many vectors are in W? c. Show that a2 is in W. [Hint: Row operations are unnecessary.] a. Is b in {a₁, a₂, a3}? Select the correct choice below and, if necessary, fill in the answer box(es) to complete your choice. A. No, b is not in (a₁, a2, aç} since b is not equal to a₁, a2, or a3. B. Yes, b is in (a₁, a2, a3} since b = a (Type a whole number.) C. Yes, b is in {a₁, a2, a3} since, although b is not equal to a₁, a2, or a3, it can be expressed as a linear combination of them. In particular, b = (a₁ + a₂ + ([ аз. (Simplify your answers.) D. No, b is not in {a₁, a2, a3} since it cannot be generated by a linear combination of a₁, №₂, and аз.
Expert Solution
Check Mark
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Advanced Engineering Mathematics
Advanced Math
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Wiley, John & Sons, Incorporated
Text book image
Numerical Methods for Engineers
Advanced Math
ISBN:9780073397924
Author:Steven C. Chapra Dr., Raymond P. Canale
Publisher:McGraw-Hill Education
Text book image
Introductory Mathematics for Engineering Applicat...
Advanced Math
ISBN:9781118141809
Author:Nathan Klingbeil
Publisher:WILEY
Text book image
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Text book image
Basic Technical Mathematics
Advanced Math
ISBN:9780134437705
Author:Washington
Publisher:PEARSON
Text book image
Topology
Advanced Math
ISBN:9780134689517
Author:Munkres, James R.
Publisher:Pearson,