Advanced Engineering Mathematics
Advanced Engineering Mathematics
10th Edition
ISBN: 9780470458365
Author: Erwin Kreyszig
Publisher: Wiley, John & Sons, Incorporated
Bartleby Related Questions Icon

Related questions

Question
Let f be a differentiable and μ-strongly-convex function whose minimum is achieved at x*. Let us assume that the
variance on the gradients is controlled: There exists σ > 0 and L≥ 0 such that E; [||Vf; (x)||² | xk] ≤0² + L ||xk − x* ||².
Prove the following statements:
1. If σ > 0 and L = 0, SGD with step size ŋk satisfies
| E || xo -
Ef (zk) - f*] ≤
=0
(1)
2 Στο
where
Σj=0jxj
Zk=
(2)
ΣΕ
In particular, E[f (zk) - f*] converges to 0 if and only if Σ, n; = ∞ and
2. If σ > 0 and L > 0, SGD with a constant step size n satisfies
= 0.
E||xk+1 - x* ||² ≤ (1 - 2nμ+n²L)*E ||xo-x* ||² + (1 − 2nµ + n²L);
-
ησε
2μ-nL
(3)
What is the restriction on the stepsize?
3. Let us observe by definition, SGD with step size n satisfies:
||K+1 – x = ||xk - xu t ng Vi(x)|| − 20k (k – x*, Vf(x)).
(4)
Derive the optimal step size and comment on it.
expand button
Transcribed Image Text:Let f be a differentiable and μ-strongly-convex function whose minimum is achieved at x*. Let us assume that the variance on the gradients is controlled: There exists σ > 0 and L≥ 0 such that E; [||Vf; (x)||² | xk] ≤0² + L ||xk − x* ||². Prove the following statements: 1. If σ > 0 and L = 0, SGD with step size ŋk satisfies | E || xo - Ef (zk) - f*] ≤ =0 (1) 2 Στο where Σj=0jxj Zk= (2) ΣΕ In particular, E[f (zk) - f*] converges to 0 if and only if Σ, n; = ∞ and 2. If σ > 0 and L > 0, SGD with a constant step size n satisfies = 0. E||xk+1 - x* ||² ≤ (1 - 2nμ+n²L)*E ||xo-x* ||² + (1 − 2nµ + n²L); - ησε 2μ-nL (3) What is the restriction on the stepsize? 3. Let us observe by definition, SGD with step size n satisfies: ||K+1 – x = ||xk - xu t ng Vi(x)|| − 20k (k – x*, Vf(x)). (4) Derive the optimal step size and comment on it.
Expert Solution
Check Mark
Knowledge Booster
Background pattern image
Similar questions
Recommended textbooks for you
Text book image
Advanced Engineering Mathematics
Advanced Math
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Wiley, John & Sons, Incorporated
Text book image
Numerical Methods for Engineers
Advanced Math
ISBN:9780073397924
Author:Steven C. Chapra Dr., Raymond P. Canale
Publisher:McGraw-Hill Education
Text book image
Introductory Mathematics for Engineering Applicat...
Advanced Math
ISBN:9781118141809
Author:Nathan Klingbeil
Publisher:WILEY
Text book image
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Text book image
Basic Technical Mathematics
Advanced Math
ISBN:9780134437705
Author:Washington
Publisher:PEARSON
Text book image
Topology
Advanced Math
ISBN:9780134689517
Author:Munkres, James R.
Publisher:Pearson,