Let an = Let an = 5n100 - 2nn n! + ln(n) 23n+3 +6n 7.8 +15n2 Then lim an = n→∞ Then lim an = n→∞

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
For each sequence below, determine the limit as \( n \to \infty \). If a limit is infinite, write "\(\infty\)" or "\(-\infty\)".

a) Let \( a_n = \frac{5n^{100} - 2n^n}{n! + \ln(n)} \). Then \( \lim_{n \to \infty} a_n = \) \(\underline{\hspace{3cm}}\)

b) Let \( a_n = \frac{2^{3n+3} + 6^n}{7 \cdot 8^n + 15n^2} \). Then \( \lim_{n \to \infty} a_n = \) \(\underline{\hspace{3cm}}\)
Transcribed Image Text:For each sequence below, determine the limit as \( n \to \infty \). If a limit is infinite, write "\(\infty\)" or "\(-\infty\)". a) Let \( a_n = \frac{5n^{100} - 2n^n}{n! + \ln(n)} \). Then \( \lim_{n \to \infty} a_n = \) \(\underline{\hspace{3cm}}\) b) Let \( a_n = \frac{2^{3n+3} + 6^n}{7 \cdot 8^n + 15n^2} \). Then \( \lim_{n \to \infty} a_n = \) \(\underline{\hspace{3cm}}\)
Expert Solution
Step 1

Advanced Math homework question answer, step 1, image 1

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,