
College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question

Transcribed Image Text:Learning Goal:
To understand polarization of light and how to use Malus's law to calculate the intensity of a
beam of light after passing through one or more polarizing filters.
The two transverse waves shown in the figure(Figure 1) both travel in the +z direction. The
waves differ in that the top wave oscillates horizontally and the bottom wave oscillates
vertically. The direction of oscillation of a wave is called the polarization of the wave. The
upper wave is described as polarized in the +x direction whereas the lower wave is
polarized in the +y direction. In general, waves can be polarized along any direction.
Recall that electromagnetic waves, such as visible light, microwaves, and X rays, consist of
oscillating electric and magnetic fields. The polarization of an electromagnetic wave refers
to the oscillation direction of the electric field, not the magnetic field. In this problem all
figures depicting light waves illustrate only the electric field.
A linear polarizing filter, often just called a polarizer, is a device that only transmits light
polarized along a specific transmission axis direction. The amount of light that passes
through a filter is quantified in terms of its intensity. If the polarization angle of the incident
light matches the transmission axis of the polarizer, 100% of the light will pass through, so
the transmitted intensity will equal the incident intensity. More generally, the intensity of light
emerging from a polarizer is described by M
y Malus's
s's law:
I = Io cos² 0.
where I, is the intensity of the polarized light beam just before entering the polarizer. I is
the intensity of the transmitted light beam immediately after passing through the polarizer,
and is the angular difference between the polarization angle of the incident beam and the
transmission axis of the polarizer. After passing through the polarizer, the transmitted light is
polarized in the direction of the transmission axis of the polarizing filter.
Figure
hv
Direction of wave
travel
< 1 of 2 >
Submit
▾ Part B
Correct
What is the polarization angle 8, of the light emerging from the polarizer?
8₂
TA
8TA-80
OTA + Bu
Submit
Part C
I₁ =
Previous Answere
(OTA-80)/2
✓ Correct
If Io =20.0 W/m².00 = 25.0 degrees, and 8TA = 40.0 degrees, what is the transmitted intensity I₁?
Express your answer numerically in watts per square meter
for Part for Part do for Part redo forrt C resor Fart C keyboard shortcuts for Fart C help for Part C
Submit
Previous Answers
Provide Feedback
Request Answer
Part D Complete previous part(s)
Part E Complete previous part(s)
Part F Complete previous part(s)
W/m²

Transcribed Image Text:Learning Goal:
To understand polarization of light and how to use Malus's law to calculate the intensity of a
beam of light after passing through one or more polarizing filters.
The two transverse waves shown in the figure (Figure 1) both travel in the +z direction. The
waves differ in that the top wave oscillates horizontally and the bottom wave oscillates
vertically. The direction of oscillation of a wave is called the polarization of the wave. The
upper wave is described as polarized in the +x direction whereas the lower wave is
polarized in the +y direction. In general, waves can be polarized along any direction.
Recall that electromagnetic waves, such as visible light, microwaves, and X rays, consist of
oscillating electric and magnetic fields. The polarization of an electromagnetic wave refers
to the oscillation direction of the electric field, not the magnetic field. In this problem all
figures depicting light waves illustrate only the electric field.
A linear polarizing filter, often just called a polarizer, is a device that only transmits light
polarized along a specific transmission axis direction. The amount of light that passes
through a filter is quantified in terms of its intensity. If the polarization angle of the incident
light matches the transmission axis of the polarizer, 100% of the light will pass through, so
the transmitted intensity will equal the incident intensity. More generally, the intensity of light
emerging from a polarizer is described by Malus's law:
I = Io cos² 0.
where I is the intensity of the polarized light beam just before entering the polarizer, I is
the intensity of the transmitted light beam immediately after passing through the polarizer,
and is the angular difference between the polarization angle of the incident beam and the
transmission axis of the polarizer. After passing through the polarizer, the transmitted light is
polarized in the direction of the transmission axis of the polarizing filter.
Figure
ko
Do
OTA
O
Polarizer
1₁
2 of 2
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Learning Goal: To understand polarization of light and how to use Malus's law to calculate the intensity of a beam of light after passing through one or more polarizing filters. The two transverse waves shown in the figure(Figure 1) both travel in the +z direction. The waves differ in that the top wave oscillates horizontally and the bottom wave oscillates vertically. The direction of oscillation of a wave is called the polarization of the wave. The upper wave is described as polarized in the +x direction whereas the lower wave is polarized in the +y direction. In general, waves can be polarized along any direction. Recall that electromagnetic waves, such as visible light, microwaves, and X rays, consist of oscillating electric and magnetic fields. The polarization of an electromagnetic wave refers to the oscillation direction of the electric field, not the magnetic field. In this problem all figures depicting light waves illustrate only the electric field. A linear polarizing filter,…arrow_forwardQuestion 1 Using the formula n=c/v and the values from table 1, which material has the highest density? question 2 Based on what you have learned about light waves an…arrow_forwardquestion in photo pleasearrow_forward
- Illustrated below are two classic experiments that illustrate two different models of light. In each case, name the model and explain how the model is used to the observations from the experiment. Experiment A Model of light: Explanation: As the microwave detector is moved from A to B the intensity of the microwaves varies as shown in the graph below. Intensity A B B Aarrow_forwardLearning Goal: To understand polarization of light and how to use Malus's law to calculate the intensity of a beam of light after passing through one or more polarizing filters. The two transverse waves shown in the figure(Figure 1) both travel in the +z direction. The waves differ in that the top wave oscillates horizontally and the bottom wave oscillates vertically. The direction of oscillation of a wave is called the polarization of the wave. The upper wave is described as polarized in the +x direction whereas the lower wave is polarized in the +y direction. In general, waves can be polarized along any direction. Recall that electromagnetic waves, such as visible light, microwaves, and X rays, consist of oscillating electric and magnetic fields. The polarization of an electromagnetic wave refers to the oscillation direction of the electric field, not the magnetic field. In this problem all figures depicting light waves illustrate only the electric field. Figure 4 of 4 20 Polarizer 2…arrow_forwardPlease solve and answer the question correctly please. Be sure to give the correct units and answers. Thank you!!arrow_forward
- Please solve and answer the question correctly please. Be sure to give the correct units and answers. Thank you!!arrow_forwardWhat are polarized light waves, and how do they differ from unpolarized light waves?arrow_forwardLearning Goal: To understand polarization of light and how to use Malus's law to calculate the intensity of a beam of light after passing through one or more polarizing filters. The two transverse waves shown in the figure(Figure 1) both travel in the +z direction. The waves differ in that the top wave oscillates horizontally and the bottom wave oscillates vertically. The direction of oscillation of a wave is called the polarization of the wave. The upper wave is described as polarized in the +x direction whereas the lower wave is polarized in the +y direction. In general, waves can be polarized along any direction. Recall that electromagnetic waves, such as visible light, microwaves, and X rays, consist of oscillating electric and magnetic fields. The polarization of an electromagnetic wave refers to the oscillation direction of the electric field, not the magnetic field. In this problem all figures depicting light waves illustrate only the electric field. Figure 2 of 2 ,00 10 XTA…arrow_forward
- Describe the distinguishing features between mechanical waves and light waves, and longitudinal versus transverse waves. Be sure to include the terms medium, particles, vacuum, perpendicular and direction of wave motion.arrow_forwardDescribe the concept of polarization of light. How can you polarize light, and what are the practical applications of polarized light?arrow_forwardPart A The color of dyes results from the preferential absorption of certain wavelengths of light. Certain dye molecules consist of symmetric pairs of rings joined at the center by a chain of carbon atoms, as shown in (Figure 1). Electrons of the bonds along the chain of carbon atoms are shared among the atoms in the chain, but are repelled by the nitrogen-containing rings at the end of the chain. These electrons are thus free to move along the chain but not beyond its ends. They look very much like a particle in a one-dimensional box. For the molecule shown, the effective length of the "box" is 0.85 nm. Assuming that the electrons start in the lowest energy state, what is the longest wavelength this molecule will absorb? Express your answer with the appropriate units. На ? A₁ = Value Units Submit Request Answer ▾ Part B Assuming that the electrons start in the lowest energy state, what is the second longest wavelength this molecule will absorb? Express your answer with the appropriate…arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON