College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Laser light at 600 nm falls on a double-slit apparatus with slit separation 6 μm. Find the separation between the following fringes as seen on a screen 1 m from the slits.
(a) The first and second bright fringes.
(b) The third and fourth bright fringes.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 3 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In a Young's double-slit experiment, a set of parallel slits with a separation of 0.114 mm is illuminated by light having a wavelength of 587 nm and the interference pattern observed on a screen 4.50 m from the slits. (a) What is the difference in path lengths from the two slits to the location of a fifth order bright fringe on the screen? ?m(b) What is the difference in path lengths from the two slits to the location of the fifth dark fringe on the screen, away from the center of the pattern? ?marrow_forwardWhen performing a Young's double slit experiment, what is the required separation distance between the two slits (in micrometers) to cause 534 nm light to have its first order maximum at an angle of 22.1 degrees? Your Answer:arrow_forwardFringes in the Thomas Young experiment are produced using sodium light of wavelength 495 nm and two slits which are 1.2 mm apart. If the fringes are formed on a screen 1.0 m away from the slits, how far is the third order bright fringe from the middle of the screen? Give your answer in millimeters (mm).arrow_forward
- Light of wavelength 530 nm passes through a slit of width 0.170 mm. (a) The width of the central maximum on a screen is 8.20 mm. How far is the screen from the slit? (b) Determine the width of the first bright fringe to the side of the central maximum. mmarrow_forwardThe intensity in the interference pattern of N 2 sin(No/2) identical slits is given by I = Io sin(ø/2) Find the maximum intensity (Imax) in the pattern. Expressed in N and I,arrow_forwardLight of wavelength 585.5 nm illuminates a slit of width 0.70 mm. (a) At what distance from the slit should a screen be placed if the first minimum in the diffraction pattern is to be 0.93 mm from the central maximum? Answer in m (b) Calculate the width of the central maximum. Answer in mmarrow_forward
- 532 nm coherent green light is incident on a double slit. The dif 85 cm away from the slits has a first order maxima 3.5 cm from a. How far apart are the two slits?arrow_forwardIn a double-slit experiment that uses monochromatic light, the angular separation between the central maximum and the third-order bright fringe is 0.2°. What is the wavelength of light if the distance between slits is 0.50 mm?arrow_forwardLight from a laser with a wavelength of 760 nm is directed at a diffraction grating of 1500 lines/cm. If the diffraction grating is located 1.5 m from the screen, calculate the distance between adjacent bright fringes. 51. Lenses often contain thin coatings to reduce reflections and UV radiation. Explain how this works.arrow_forward
- Light of wavelength 588.2 nm illuminates a slit of width 0.63 mm. (a) At what distance from the slit should a screen be placed if the first minimum in the diffraction pattern is to be 0.86 mm from the central maximum? (b) Calculate the width of the central maximum. Step 1 (a) As shown in the figure, dark bands or minima occur where sin 0 = m(2/a). For the first minimum, m = 1 and the distance from the center of the central maximum to the first minimum is y₁ = L tan 8, where L is the distance of the viewing screen from the slit. 32 sin dark = 22/a 31 sin dark = λ/a HE 0 -1 sin dark = -λ/a -2 sin dark = -22/a Viewing screen a Because is very small, we can use the approximation tan sin 0 = m(2/a). Substituting the approximation and solving for the distance to the screen, we have 6.3 x 10 m ³ m ) (₁ L = = y ₁ ( ² ) = x 10-3 m x 10-⁹ m m.arrow_forwardQuestion 2: The third order bright fringe of 610 nm light is observed at an angle of 28° when the light falls on two narrow slits. How far apart are the slits? Question 3: Light falls on two very narrow slits 0.68 mm apart. Successive fringes on a screen 6 m aware are 8.5 cm apart near the center of the pattern. Determine the wavelength and frequency of the light.arrow_forwardA sodium gas-discharge lamp emits a visible "doublet" of two spectral emission lines, one at 589.0nm and the other at 589.6nm. (a) How many slits/cm are required for a transmission diffraction grating that is 2.5 cm wide to distinctly resolve these two lines at first order (m=1) ? (b) At second order (m=2) ?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON