Jensen Tire & Auto is in the process of deciding whether to purchase a maintenance contract for its new computer wheel alignment and balancing machine. Managers feel that maintenance expense should be related to usage, and they collected the following information on weekly usage (hours) and annual maintenance expense (in hundreds of dollars).
Weekly Usage (hours) |
Annual Maintenance Expense |
17 | 22 |
14 | 27 |
24 | 35 |
32 | 42 |
36 | 52 |
21 | 36 |
28 | 38 |
35 | 44 |
44 | 57 |
42 | 45 |
a. Develop the estimated regression equation that relates annual maintenance expense to weekly usage (to 3 decimals). expense + weekly usage
b. Test the significance of the relationship in part (a) at a level of significance.
Compute the value of the f test statistic (to 2 decimals).
c. Jensen expects the new machine to be used 30 hours per week. What is the expected annual maintenance expense in hundreds of dollars (to 2 decimals)?
$ hundred
Develop a 95% prediction interval for the company's annual maintenance expense for this machine (to 2 decimals).
($ hundred, $ hundred)
Step by stepSolved in 2 steps with 2 images
- Find the equation of the regression line for the following data set. x 1 2 3 y 0 3 4arrow_forwardOlympic Pole Vault The graph in Figure 7 indicates that in recent years the winning Olympic men’s pole vault height has fallen below the value predicted by the regression line in Example 2. This might have occurred because when the pole vault was a new event there was much room for improvement in vaulters’ performances, whereas now even the best training can produce only incremental advances. Let’s see whether concentrating on more recent results gives a better predictor of future records. (a) Use the data in Table 2 (page 176) to complete the table of winning pole vault heights shown in the margin. (Note that we are using x=0 to correspond to the year 1972, where this restricted data set begins.) (b) Find the regression line for the data in part ‚(a). (c) Plot the data and the regression line on the same axes. Does the regression line seem to provide a good model for the data? (d) What does the regression line predict as the winning pole vault height for the 2012 Olympics? Compare this predicted value to the actual 2012 winning height of 5.97 m, as described on page 177. Has this new regression line provided a better prediction than the line in Example 2?arrow_forwardZagat’s publishes restaurant ratings for various locations in the United States. The following table contains the Zagat rating for food, décor, service, and the cost per person for a sample of 100 restaurants located in New York City and in a suburb of New York City. Develop a regression model to predict the cost per person, based on a variable that represents the sum of the ratings for food, décor, and service. Predict the mean cost per person for a restaurant with a sum-mated rating of 50. What should you tell the owner of a group of restaurants in this geographical area about the relationship between the summated rating and the cost of a meal? Location Food Décor Service Summated Rating Coded Location Cost Bins Midpoints City 22 14 19 55 0 33 19.99 25 City 20 15 20 55 0 26 29.99 35 City 23 19 21 63 0 43 39.99 45 City 19 18 18 55 0 32 49.99 55 City 24 16 18 58 0 44 59.99 65 City 22 22 21 65 0 44 69.99 75 City 22 20 20 62 0 50 79.99 85 City 20 19…arrow_forward
- Bowling Corporation wants to know how closely its current cost driver is correlated with its monthly operating costs. The managerial accountant runs a regression analysis using a statistical software program and produces the following data: Intercept Coefficient = 12,200,567 X Variable 1 Coefficient = 95.65 R-square= 0.8574 What is the Bowling Corporation's monthly cost equation? OA. y $95.65x + $12,200,567 OB. y $95.65x + $8.574 O c. y = $0.8574x + $12,200,567 O D. y = $12,200,567x + $8,574 ---arrow_forwardD& T LTD marketing team needed more information about the effectiveness of their 3 main mode of advertising. To determine which type is the most effective, the manager collected one week’s data from 25 randomly selected stores. For each store, the following variables were recorded: Weekly gross sales Weekly expenditure on direct mailing (Direct) Weekly expenditure on newspaper advertising (Newspaper) Weekly expenditure on television commercials (Television) Following is the regression output based on the above-mentioned data. SUMMARY OUTPUT Regression Statistics Multiple R 0.442…arrow_forwardThe regional transit authority for a major metropolitan area wants to determine whetherthere is a relationship between the age of a bus and the annual maintenance cost. A sampleof ten buses resulted in the following data: a. Develop a scatter chart for these data. What does the scatter chart indicate about therelationship between age of a bus and the annual maintenance cost?b. Use the data to develop an estimated regression equation that could be used to predictthe annual maintenance cost given the age of the bus. What is the estimated regressionmodel?c. Test whether each of the regression parameters b0 and b1 is equal to zero at a 0.05level of significance. What are the correct interpretations of the estimated regressionparameters? Are these interpretations reasonable?d. How much of the variation in the sample values of annual maintenance cost does themodel you estimated in part b explain?e. What do you predict the annual maintenance cost to be for a 3.5-year-old bus?arrow_forward
- Develop a scatter plot between annual household spending and annual income. The scatter diagram should include a proper title, a solid trend line, axis titles, and a regression equation, and the Coefficient of Determination (R –square). Monthly Household Spending ($) Annual Household Income ($) HouseholdSize 4,016 54000 3 3,159 30000 2 5,100 32000 4 4,742 50000 5 1,864 31000 2 4,070 55000 2 2,731 37000 1 3,348 40000 2 4,764 66000 4 4,110 51000 3 4,208 25000 3 4,219 48000 4 2,477 27000 1 2,514 33000 2 4,214 65000 3 4,965 63000 4 4,412 42000 6 2,448 21000 2 2,995 44000 1 4,171 37000 5 5,678 62000 6 3,623 21000 3 5,301 55000 7 3,020 42000 2 4,828 41000 7 5,573 54000 6 2,583 30000 1 3,866 48000 2 3,586 34000 5 5,037 67000 4 3,605 50000 2 5,345 67000 5 5,370 55000 6 3,890 52000 2 4,705 62000 3 4,157 64000 2 3,579 22000 3 3,890 29000 4 2,972 39000 2 3,121 35000 1 4,183 39000 4 3,730 54000 3 4,127…arrow_forwardThe Transactional Records Access Clearinghouse at Syracuse University reported data showing the odds of an Internal Revenue Service audit. The following table shows the average adjusted gross income reported and the percent of the returns that were audited for 20 selected IRS districts. Develop the estimated regression equation that could be used to predict the percent audited given the average adjusted gross income reported. At the .05 level of significance, determine whether the adjusted gross income and the percent audited are related. Did the estimated regression equation provide a good fit? District Adjusted Gross Income ($) Percent Audited Los Angeles 36,664 1.3 Sacramento 38,845 1.1 Atlanta 34,886 1.1 Boise 32,512 1.1 Dallas 34,531 1.0 Providence 35,995 1.0 San Jose 37,799 0.9 Cheyenne 33,876 0.9 Fargo 30,513 0.9 New Orleans 30,174 0.9 Oklahoma City 30,060 0.8 Houston 37,153…arrow_forwardBill wants to explore factors affecting work stress. He would like to examine the relationship between age, number of years at the workplace, perceived social support, and work stress. He collects data on the variables from 100 employees (males and females) working in banks. The research question is How accurately can work stress be predicted from linear combination of the predictors (age, social support, number of years at the workplace)? Conduct a multiple regression analysis to answer the following questions: What is the regression equation for all the predictors? Write a results section based on your analysis that answers the research question.arrow_forward
- Consumer Reports tested 19 different brands and models of road, fitness, and comfort bikes. Road bikes are designed for long road trips; fitness bikes are designed for regular workouts or daily commuters; and comfort bikes are designed for leisure rides on typically flat roads. The data file Bikes show the type, weight (lb.), and price ($) for the 20 bicycles tested. Develop an estimated regression equation that can be used to predict Price by using Type and Weight. Brand and Model Type Weight Price Klein Rêve v Road 20 1800 Giant OCR Composite 3 Road 22 1800 Giant OCR 1 Road 22 1000 Specialized Roubaix Road 21 1300 Trek Pilot 2.1 Road 21 1320 Cannondale Synapse 4 Road 21 1050 LeMond Poprad Road 22 1350 Raleigh Cadent 1.0 Road 24 650 Giant FCR3 Fitness 23 630 Schwinn Super Sport GS Fitness 23 700 Fuji Absolute 2.0 Fitness 24 700 Jamis Coda Comp Fitness 26 830 Cannondale Road Warrior 400 Fitness 25 700 Schwinn Sierra GS Comfort 31 340 Mongoose…arrow_forwardCan brand, battery life, and internal storage capacity affect a smartphone's price? Use MegaStat and α = .05 to perform a regression analysis for the Smartphones01BS dataset and answer the following questions. When you copy and paste output from MegaStat to answer a question, remember to choose to "Keep Formatting" to paste the text.arrow_forwardThe St. Lucian Government is interested in predicting the number of weekly riders on the public buses using the following variables: • • • • Price of bus trips per weekThe population in the cityThe monthly income of ridersAverage rate to park your personal vehicle Determine the multiple regression equation for the data. What is the predicted value of the number of weekly riders if: price of bus trips per week = $24; population = $2,000,000; the monthly income of riders = $13,500; and average rate to park your personal vehicle = $150. Interpret the coefficient of determination.arrow_forward
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillBig Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin HarcourtFunctions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage Learning
- College AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningAlgebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning