* jax vnen 8. xy dx + 2(x² + 2y²)dy = 0 ; when x = 0, y = 1

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

can you answer number 8

1. 3(3x? + у?)dx — 2хy dy %3D0
2. x²y' = 4x² + 7xy + 2y²
3. (x? + 2ху — 4у?)dx - (x? — 8ху -4у?)dy %3D 0
4. v² dx + x(x + v)dv = 0
5. [x- yarctan (2)1 dx + x arctan (2) dy = 0
6. (Зх? - 2ху + Зу?)dx %3D 4xy dy
7. (y + x? + y² )dx – x dy = 0 ; when x = v3,y = 1
8. xy dx + 2(x² + 2y²)dy = 0 ; when x = 0, y = 1
9. y(x² +y²) dx + x(3x² – 5y²)dy = 0 ; when x = 2, y = 1
10. v(3x + 2v)dx – x² dv = 0 ; when x = 1,v = 2
Transcribed Image Text:1. 3(3x? + у?)dx — 2хy dy %3D0 2. x²y' = 4x² + 7xy + 2y² 3. (x? + 2ху — 4у?)dx - (x? — 8ху -4у?)dy %3D 0 4. v² dx + x(x + v)dv = 0 5. [x- yarctan (2)1 dx + x arctan (2) dy = 0 6. (Зх? - 2ху + Зу?)dx %3D 4xy dy 7. (y + x? + y² )dx – x dy = 0 ; when x = v3,y = 1 8. xy dx + 2(x² + 2y²)dy = 0 ; when x = 0, y = 1 9. y(x² +y²) dx + x(3x² – 5y²)dy = 0 ; when x = 2, y = 1 10. v(3x + 2v)dx – x² dv = 0 ; when x = 1,v = 2
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,