MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
6th Edition
ISBN: 9781119256830
Author: Amos Gilat
Publisher: John Wiley & Sons Inc
Bartleby Related Questions Icon

Related questions

Topic Video
Question

Is there a relationship between confidence intervals and two-tailed hypothesis tests? Let c be the level of confidence used to construct a confidence interval from sample data. Let ? be the level of significance for a two-tailed hypothesis test. The following statement applies to hypothesis tests of the mean.

For a two-tailed hypothesis test with level of significance ? and null hypothesis H0: ? = k, we reject H0 whenever k falls outside the c = 1 − ? confidence interval for ? based on the sample data. When k falls within the c = 1 − ? confidence interval, we do not reject H0.

(A corresponding relationship between confidence intervals and two-tailed hypothesis tests also is valid for other parameters, such as p, ?1 − ?2, or p1 − p2, which we will study later.) Whenever the value of k given in the null hypothesis falls outside the c = 1 − ? confidence interval for the parameter, we reject H0. For example, consider a two-tailed hypothesis test with ? = 0.01 and

H0: ? = 20        H1: ? ≠ 20

A random sample of size 38 has a sample mean x = 23 from a population with standard deviation ? = 5.

Is there a relationship between confidence intervals and two-tailed hypothesis tests? Let c be the level of confidence used to construct a confidence interval from sample data. Let a be the level of significance for a two-tailed hypothesis test. The following statement applies to hypothesis tests of the mean.
For a two-tailed hypothesis test with level of significance a and null hypothesis
Ho: u = k, we reject H, whenever k falls outside the c = 1- a confidence interval
for u based on the sample data. When k falls within the c = 1 - a confidence
interval, we do not reject Ha:
(A corresponding relationship between confidence intervals and two-tailed hypothesis tests also is valid for other parameters, such as p, u, - Ha, or p. - Pa, which we will study later.) Whenever the value of k given in the null hypothesis falls outside the c = 1 - a confidence interval for the parameter, we reject H.. For
example, consider a two-tailed hypothesis test with a = 0.01 and
Ho: 4 = 20
H: u = 20
A random sample of size 38 has a sample mean x = 23 from a population with standard deviation o = 5.
(a) What is the value of c = 1 - a?
Construct a 1 - a confidence interval for u from the sample data. (Round your answers to two decimal places.)
lower limit
upper limit
What is the value of u given in the null hypothesis (i.e., what is k)?
k =
Is this value in the confidence interval?
O Yes
O No
Do we reject or fail to reject H, based on this information?
O we fail to reject the null hypothesis since u = 20 is not contained in this interval.
O we fail to reject the null hypothesis since u = 20 is contained in this interval.
O we reject the null hypothesis since u = 20 is not contained in this interval.
O we reject the null hypothesis since u = 20 is contained in this interval.
(b) Using methods of this chapter, find the P-value for the hypothesis test. (Round your answer to four decimal places.)
Do we reject or fail to reject H,?
O we fail to reject the null hypothesis since there is sufficient evidence that u differs from 20.
O we fail to reject the null hypothesis since there is insufficient evidence that u differs from 20.
O we reject the null hypothesis since there is sufficient evidence that u differs from 20.
O we reject the null hypothesis since there is insufficient evidence that u differs from 20.
Compare your result to that of part (a).
O We rejected the null hypothesis in part (b) but failed to reject the null hypothesis in part (a).
O we rejected the null hypothesis in part (a) but failed to reject the null hypothesis in part (b).
O These results are the same.
expand button
Transcribed Image Text:Is there a relationship between confidence intervals and two-tailed hypothesis tests? Let c be the level of confidence used to construct a confidence interval from sample data. Let a be the level of significance for a two-tailed hypothesis test. The following statement applies to hypothesis tests of the mean. For a two-tailed hypothesis test with level of significance a and null hypothesis Ho: u = k, we reject H, whenever k falls outside the c = 1- a confidence interval for u based on the sample data. When k falls within the c = 1 - a confidence interval, we do not reject Ha: (A corresponding relationship between confidence intervals and two-tailed hypothesis tests also is valid for other parameters, such as p, u, - Ha, or p. - Pa, which we will study later.) Whenever the value of k given in the null hypothesis falls outside the c = 1 - a confidence interval for the parameter, we reject H.. For example, consider a two-tailed hypothesis test with a = 0.01 and Ho: 4 = 20 H: u = 20 A random sample of size 38 has a sample mean x = 23 from a population with standard deviation o = 5. (a) What is the value of c = 1 - a? Construct a 1 - a confidence interval for u from the sample data. (Round your answers to two decimal places.) lower limit upper limit What is the value of u given in the null hypothesis (i.e., what is k)? k = Is this value in the confidence interval? O Yes O No Do we reject or fail to reject H, based on this information? O we fail to reject the null hypothesis since u = 20 is not contained in this interval. O we fail to reject the null hypothesis since u = 20 is contained in this interval. O we reject the null hypothesis since u = 20 is not contained in this interval. O we reject the null hypothesis since u = 20 is contained in this interval. (b) Using methods of this chapter, find the P-value for the hypothesis test. (Round your answer to four decimal places.) Do we reject or fail to reject H,? O we fail to reject the null hypothesis since there is sufficient evidence that u differs from 20. O we fail to reject the null hypothesis since there is insufficient evidence that u differs from 20. O we reject the null hypothesis since there is sufficient evidence that u differs from 20. O we reject the null hypothesis since there is insufficient evidence that u differs from 20. Compare your result to that of part (a). O We rejected the null hypothesis in part (b) but failed to reject the null hypothesis in part (a). O we rejected the null hypothesis in part (a) but failed to reject the null hypothesis in part (b). O These results are the same.
Expert Solution
Check Mark
Knowledge Booster
Background pattern image
Statistics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc
Text book image
Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning
Text book image
Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning
Text book image
Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON
Text book image
The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman
Text book image
Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman