Intestinal epithelial cells pump glucose into the cell against its concentration gradient using the Na+– glucose symporter. Recall that the Na+ concentration is significantly higher outside the cell than inside the cell. The symporter couples the "downhill" transport of two Na+ ions into the cell to the "uphill" transport of glucose into the cell. If the Na+ concentration outside the cell ([Na+]out) is 163 mM and that inside the cell ([Na+]in) is 21.0 mM, and the cell potential is −54.0 mV (inside negative), calculate the maximum energy available for pumping a mole of glucose into the cell. Assume the temperature is 37 °C. Answer in kJ/mol.
Intestinal epithelial cells pump glucose into the cell against its concentration gradient using the Na+– glucose symporter. Recall that the Na+ concentration is significantly higher outside the cell than inside the cell. The symporter couples the "downhill" transport of two Na+ ions into the cell to the "uphill" transport of glucose into the cell. If the Na+ concentration outside the cell ([Na+]out) is 163 mM and that inside the cell ([Na+]in) is 21.0 mM, and the cell potential is −54.0 mV (inside negative), calculate the maximum energy available for pumping a mole of glucose into the cell. Assume the temperature is 37 °C. Answer in kJ/mol.
Chemistry: The Molecular Science
5th Edition
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:John W. Moore, Conrad L. Stanitski
Chapter10: Fuels, Organic Chemicals, And Polymers
Section: Chapter Questions
Problem 119QRT
Related questions
Question
Intestinal epithelial cells pump glucose into the cell against its concentration gradient using the Na+–
glucose symporter. Recall that the Na+
concentration is significantly higher outside the cell than inside the cell. The symporter couples the "downhill" transport of two Na+
ions into the cell to the "uphill" transport of glucose into the cell.
If the Na+
concentration outside the cell ([Na+]out)
is 163 mM
and that inside the cell ([Na+]in)
is 21.0 mM,
and the cell potential is −54.0 mV
(inside negative), calculate the maximum energy available for pumping a mole of glucose into the cell. Assume the temperature is 37 °C.
Answer in kJ/mol.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Recommended textbooks for you
Chemistry: The Molecular Science
Chemistry
ISBN:
9781285199047
Author:
John W. Moore, Conrad L. Stanitski
Publisher:
Cengage Learning
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:
9781305079243
Author:
Steven S. Zumdahl, Susan A. Zumdahl
Publisher:
Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:
9781285199047
Author:
John W. Moore, Conrad L. Stanitski
Publisher:
Cengage Learning
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:
9781305079243
Author:
Steven S. Zumdahl, Susan A. Zumdahl
Publisher:
Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:
9781337399074
Author:
John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:
Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:
9781133949640
Author:
John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:
Cengage Learning