Advanced Engineering Mathematics
Advanced Engineering Mathematics
10th Edition
ISBN: 9780470458365
Author: Erwin Kreyszig
Publisher: Wiley, John & Sons, Incorporated
Bartleby Related Questions Icon

Related questions

Question
In this problem you will use the same vector field from Problem 2, namely
F(x, y, z) = (3xy, 4xz, -3yz+6)
(where you have already verified that div(F) = 0).
Do the following:
(a) Calculate a vector potential Ā for F.
(b) Check your answer by verifying that curl(A) = F.
For (a) you can use the step-by-step method from class. Here is a quick
review of that method; you can also consult class notes.
Consider a C¹ vector field defined for all (x, y, z) = R³,
F(x, y, z) = (P(x, y, z), Q(x, y, z), R(x, y, z))
Any vector field
A(x, y, z) = (L(x, y, z), M(x, y, z), N(x, y, z))
which is a solution to the vector differential equation
curl(A) = F
expand button
Transcribed Image Text:In this problem you will use the same vector field from Problem 2, namely F(x, y, z) = (3xy, 4xz, -3yz+6) (where you have already verified that div(F) = 0). Do the following: (a) Calculate a vector potential Ā for F. (b) Check your answer by verifying that curl(A) = F. For (a) you can use the step-by-step method from class. Here is a quick review of that method; you can also consult class notes. Consider a C¹ vector field defined for all (x, y, z) = R³, F(x, y, z) = (P(x, y, z), Q(x, y, z), R(x, y, z)) Any vector field A(x, y, z) = (L(x, y, z), M(x, y, z), N(x, y, z)) which is a solution to the vector differential equation curl(A) = F
is called a vector potential for F. (We know from class or from Briggs
calculus that div(curl(A)) 0, so only a vector field with divergence 0
=
can have a vector potential; for this problem, you have already calculated
that div(F) = 0 in problem 2).
Here is a procedure to compute a vector potential:
=
Starting from A (L, M, N) where L, M, N are unknown, write the
formula for curl(Ã), set it equal to ♬ = (P,Q,R), and separate into
three component formulas: one for P, one for Q, and one for R.
• Assume L = 0, and use assumption that to simplify the component
formulas for P, Q and R.
Now you know L.
Starting from the formula for Q in step (b), partially integrate with
respect to x to get a formula for N, having an integration constant
f(y, z) that depends on y and z. Assume f(y, z) = 0.
Now you know N.
Starting from the formula for R in step (b), partially integrate with
respect to x to get a formula for M. You should again have an
integration constant g(y, z) that again depends on y and z. This
time do NOT assume that g(y, z) is equal to 0.
Now you partly know M, except you don't yet have a formula for
g(y, z).
Starting with the formula for P in step (b),
-plug in your formulas for N in step (c)
-plug in your formula for M in step (d).
-
Simplify and solve for g(y, z). (There should be no dependence
on x in your formula for g(y, z); if there is, you've done something
wrong, so go back and check through your work).
Now you know M completely.
⚫ Putting it altogether, you've found a formula for a vector potential
A = (L, M, N) of the vector field F.
expand button
Transcribed Image Text:is called a vector potential for F. (We know from class or from Briggs calculus that div(curl(A)) 0, so only a vector field with divergence 0 = can have a vector potential; for this problem, you have already calculated that div(F) = 0 in problem 2). Here is a procedure to compute a vector potential: = Starting from A (L, M, N) where L, M, N are unknown, write the formula for curl(Ã), set it equal to ♬ = (P,Q,R), and separate into three component formulas: one for P, one for Q, and one for R. • Assume L = 0, and use assumption that to simplify the component formulas for P, Q and R. Now you know L. Starting from the formula for Q in step (b), partially integrate with respect to x to get a formula for N, having an integration constant f(y, z) that depends on y and z. Assume f(y, z) = 0. Now you know N. Starting from the formula for R in step (b), partially integrate with respect to x to get a formula for M. You should again have an integration constant g(y, z) that again depends on y and z. This time do NOT assume that g(y, z) is equal to 0. Now you partly know M, except you don't yet have a formula for g(y, z). Starting with the formula for P in step (b), -plug in your formulas for N in step (c) -plug in your formula for M in step (d). - Simplify and solve for g(y, z). (There should be no dependence on x in your formula for g(y, z); if there is, you've done something wrong, so go back and check through your work). Now you know M completely. ⚫ Putting it altogether, you've found a formula for a vector potential A = (L, M, N) of the vector field F.
Expert Solution
Check Mark
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Advanced Engineering Mathematics
Advanced Math
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Wiley, John & Sons, Incorporated
Text book image
Numerical Methods for Engineers
Advanced Math
ISBN:9780073397924
Author:Steven C. Chapra Dr., Raymond P. Canale
Publisher:McGraw-Hill Education
Text book image
Introductory Mathematics for Engineering Applicat...
Advanced Math
ISBN:9781118141809
Author:Nathan Klingbeil
Publisher:WILEY
Text book image
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Text book image
Basic Technical Mathematics
Advanced Math
ISBN:9780134437705
Author:Washington
Publisher:PEARSON
Text book image
Topology
Advanced Math
ISBN:9780134689517
Author:Munkres, James R.
Publisher:Pearson,