College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
In the figure shown, the total resistance is 15.0 kΩ and the fem of the battery is 24.0 V.
the time constant is measured at 24.0 µs
calculate a) the total capacitance of the circuit and b) the time it takes the voltage through the resistor to reach 16.0 V after the switch is closed.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 1 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 18 µF 30 μF 3 μF 13.2 μF O 2 μF 4 µF HH 3.0 μF 30 Varrow_forwardIn the circuit diagram R1 = 5R and R2 = 15R, where R = 14 Ω. The power dissipated in resistor 2 is P = 1.6 W. Part (a) What is the voltage across the battery in volts? Part (b) How much power, Ps, is the source supplying, in watts?arrow_forwardConsider the circuit shown in the figure. A short time after closing the switch, the charge on the capacitor is 85.0% of its initial charge. Assume the circuit has a time constant of 19.2 s. +Q R w (a) Calculate the time interval required (in s) for the capacitor to reach this charge. S (b) If R = 280 k2, what is the value of C (in μF)? μFarrow_forward
- What is the electrical potential difference between point A and B in the electric circuit below? V = 24 V, R1 = 20 Ω, R2 = 32 Ω, R3 = 44 Ω.arrow_forwardWhen switch S in (Figure 1) is open, the voltmeter V of the battery reads 3.13 V. When the switch is closed, the voltmeter reading drops to 2.93 V, and the ammeter A reads 1.69 A. Assume that the two meters are ideal, so they don't affect the circuit. For related problemsolving tips and strategies, you may want to view a Video Tutor Solution of A source with a short circuit. Figure S V r E -ww+ R A 1 of 1 Find the emf. Express your answer in volts. E = Submit Part B r = Find the internal resistance r of the battery. Express your answer in ohms. Submit Part C Π| ΑΣΦ Request Answer R= | ΑΣΦ Request Answer Find the resis ance R. Express your answer in ohms. IVE| ΑΣΦ ? ? ? V Ω Ωarrow_forwardThe Q vs t graph shown below is for the capacitor of an RC circuit. Q (C) 8 6. 4. 2. O 6. t(s) 10 20 30 40 50 60 70 80 90 100 4. Second graph The Q vs t graph shown below is for the capacitor of an RC circuit. Q (C) 8 2 2 3 4 Determine the time constant of the RC circuit. t(s) T= If C = 4 F, determine R. R = Ω In this case, was the capacitor charging or discharging? --Select- Determine the time constant of the RC circuit. T= If R = 102, determine C. C = In this case, was the capacitor charging or discharging? -Select- + #arrow_forward
- Problem 5: A current of I- 2.6 A passes through the circuit shown, where R- 65 3R 5R V) 2R 6R 2R 7R 5R 10R Otheexpertta.com Part (a) In terms of R, I, and numeric values, write an expression for the voltage of the · source, V. Part (b) What is the voltage, V in volts? tan( sin() cotanO a acos cosh0t cosO asin() acotan 4 5 6 sinh() cotanhO *1 23 0 tanh0c O Degrees O Radians CLEAR BACKSPACEarrow_forwardConsider an initially uncharged capacitor in an RC circuit. The resistance is 25,957 Ohms and the capacitance is 555 x 10^-6 F. If the source potential being used to charge the capacitor is 14.8 V, how long after charging begins will the energy stored by the capacitor be 65.5% of its maximum value.arrow_forwardIn the circuit shown in the figure, the S switch closed at t=0 and the capacitors, which are completely empty, begin to fill. Here ε=10 V, C=5 μF and R=55 Ω. What is the time constant of the circuit, τ, in units of microseconds? When t= τ, what is the total charge, in units of microcoulomb, accumulated in the capacitors?arrow_forward
- Consider the circuit shown in the figure. A short time after closing the switch, the charge on the capacitor is 90.0% of its initial charge. Assume the circuit has a time constant of 17.7 s. +Q (a) Calculate the time interval required (in s) for the capacitor to reach this charge. (b) If R = 220 k2, what is the value of C (in uF)? µF Need Help? Read Itarrow_forwardConsider the circuit shown in the figure. A short time after closing the switch, the charge on the capacitor is 90.0% of its initial charge. Assume the circuit has a time constant of 17.7 s. +Q C Fe (a) Calculate the time interval required (in s) for the capacitor to reach this charge. (b) If R = 220 k2, what is the value of C (in µF)? µF RIarrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON