College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
In the figure Q = 5.8 nC and all other quantities are accurate to 2 significant figures.
What is the magnitude of the force on the charge Q? (k = 1/4πε0 = 8.99 ×
10^9 N ∙ m^2/C^2)
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Step 1: Given data
VIEW Step 2: Representation of given system of charges.
VIEW Step 3: Calculation for magnitude of force on charge Q due to q1.
VIEW Step 4: Calculation for components of force on charge Q due to q1.
VIEW Step 5: Calculation for magnitude of force on charge Q due to q2.
VIEW Step 6: Calculation for components of force on charge Q due to q2.
VIEW Step 7: Calculation for magnitude of net force charge Q.
VIEW Solution
VIEW Trending nowThis is a popular solution!
Step by stepSolved in 8 steps with 64 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Three charged particles are placed at the corners of an equilateral triangle of side 1.20 mm (see (Figure 1)). The charges are Q1Q1 = 7.4 μCμC , Q2Q2 = -7.8 μCμC , and Q3Q3 = -5.0 μCμC .arrow_forwardTwo parallel plates of charge (+) and (-) are placed with a distance of d = 5 mm (see picture). The charge density of each plate is the same, namely 17.7 μC/m². A positive charge q = +3 nC with mass m = 30 x 10^-30 kg is released from rest starting from the left plate. What is the kinetic energy of this charge when it arrives at the right plate?arrow_forwardTwo point charges are located 2.5 mm apart. The force between the particles has a negative magnitude of 4.0N. If the two point charges are moved 5.0 mm apart and everything remains the same, the new face between the charges will have a magnitude of? I know the answer is 1.0 N but how?arrow_forward
- There is a 30 microcoulomb charge at the origin. There is a 154 microcoulomb charge on the x axis at x = 4 meters, and a 146 microcoulomb charge on the y axis at y = 4 meters. What is the magnitude of the net force from the interaction between the charges on the 30 microcoulomb charge at the origin. Give you answer in Newtonsarrow_forwardA hollow conducting sphere with inner radius a=1.0m and outer radius b=2.0m is shown in figure (Figure 1). Say a charge q=7.0nC is placed at the center of the sphere denoted by O. Here m denotes meter and 1nC denotes one nano coulomb or 1×10−9C. coulomb constant is k=8.987×109N⋅m2/C2. and r is the distance from the center. (a) Potential at r=a+b2 is, V=?volt Potential Give your answer up to at least three significance digits. (b) Electric Field at r=a+b2 is E(r)=?N/C Electric field Give your answer up to at least three significance digits (c) Magnitude of the electric Field at r=a2 is E(r)=?N/C Electric field Give your answer up to at least three significance digits.arrow_forwardAnswer the followingarrow_forward
- Four identical charged particles (g = +10.2 µC) are located on the corners of a rectangle as shown in the figure below. The dimensions of the rectangle are L = 65.4 cm and W = 15.1 cm. W L b. (a) Calculate the magnitude of the total electric force exerted on the charge at the lower left corner by the other three charges. 44 Your response is within 10% of the correct value. This may be due to roundoff error, or you could have a mistake in your calculation. Carry out all intermediate results to at least four-digit accuracy to minimize roundoff error. Narrow_forwardStatic charges common with humans range from nano- to micro-coulombs. How many excess electrons are needed to create a net charge of -500 nC? If a human has an excess of 1.25 x 1012 electrons, what is his/her net charge in microcoulombs?arrow_forwardWhat is the magnitude of the force a +20 µC charge exerts on a +3.5 mC charge 42 cm away? Express your answer to two significant figures and include the appropriate units. HẢ ? F = Value Unitsarrow_forward
- Two charges, q₁=3.1 mC and q₂=1.6q₁ are placed along x axis so that q₁ is at the origin and 92 is at point (12.4, 0) cm. Where along the x axis is the net electric field equal to zero? Enter the x-coordinate of the position. Provide your answer in centimeters, with precision of three significant figures.arrow_forwardB Q3 d₁ d₂ d3 d4 Three point charges Q₁ = -2.64 nC, Q2 = 3.24 nC and Q3 = 3.45 nC are shown in the figure. The distance in the figure are: d₁ = 1.10 cm, d₂ = 1.47 cm, d3 = 1.54 cm and d4 = 1.32 cm. The figure is not to scale. Use k=8.99 × 10⁹ Nm²/C². (a) If a proton is released from rest at point *B, how fast is it moving when it is very far away from the three charges? VC = (b) How fast would the proton need to be moving very far away from the three charges to reach *B with a speed of 9.78 x 105 m/s? VD= (c) If an electron is released from rest very far away from the three charges shown, how fast would it be moving at *B? VE = (d) How fast must an electron be moving at *B to come to rest very far away from the three charges? UF =arrow_forwardyou pull your t-shirt out of the washing machine and note that 1506 particles have become attached, each of which could be either an electron or a proton. Your t-shirt has a net charge of −3.68 x 10-17 C. (a) How many electrons are attached to your t-shirt? (b) What is the mass of the particles attached to your t-shirt? kgarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON