
College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question

Transcribed Image Text:193 LED, Fall 2032/W
In the figure below, each charged particle is located at one of the four vertices of a square with side length = a. In the figure, A3, 8-2, and C-7, and a > 0.
(a) What is the expression for the magnitude of the electric field in the upper right corner of the square (at the location of q)? (Use the following as necessary: a, a, and kg.)
6.24ka
En
Bq
F-
x
Give the direction angle (in degrees counterclockwise from the +x-axis) of the electric field at this location.
45
X(counterclockwise from the +x-axis)
(b) Determine the expression for the total electric force exerted on the charge q. (Enter the magnitude. Use the following as necessary: q, a, and )
6.24k
X
Give the direction angle (in degrees counterclockwise from the +-axis) of the electric force on q.
45
X (counterclockwise from the +x-axis)
(c) What If? How would the answers to parts (a) and (b) change if each of the four charges were negative with the same magnitude? Select all that apply
The force would be the same magnitude but opposite direction as the force in part (b).
The force would be the same magnitude and direction as the force in part (b).
23R
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 3 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The figure below shows a dipole. If the positive particle has a charge of 35.9 mC and the particles are 2.88 mm apart, what is the electric field at point A located 2.00 mm above the dipole's midpoint? (Express your answer in vector form.) 7 = N/C A d/2 V d/2arrow_forwardPositive charge is distributed with a uniform density λ along the positive x-axis from r to ∞, along the positive y-axis from r to ∞, and along a 90° arc of a circle of radius r, as shown below. What is the electric field at O? (Use the following as necessary: λ, r, and ε0.) E = _____ i + ______ j + ______ karrow_forwardDraw the graph and show complete solutionsLet: q1 = +8 μC , at the originq2 = +6 μC , 6 meters to the right of the originq3 = -86 μC , 8 meters above q2q4 = -0.75 μC , 8 meters above the origin Find the magnitude and direction of the total electric force and total electric field at q3.arrow_forward
- A uniform electric field of magnitude 43.1N/C is parallel to the x axis. A circular loop of radius 25.7cm is centered at the origin with the normal to the loop pointing 27.4 above the x axis. A). Calculate the electric flux in, newton squared meters per coulomb, through the loop. B). To what angle, in degrees from the positive x axis, should the normal of the loop be rotated so that the flux through the loop becomes 0.419N⋅m2/C?arrow_forwardGive an expression for the electric field strength ?E at a point in terms of the charge ?q and distance ?r from the charge to that point. Use ?k for 14??014πε0 (i.e. ?≡14??0k≡14πε0). Use the following notation (without the quotes): "/" for division, "*" for multiplication, "+" an "-" as usual. For powers used "^2", while for square root use "sqrt". To indicate that square root applies to the whole expression use brackets - for example, for ??‾‾‾‾√AB use sqrt(A*B). For Greek letters such as ?π, ?α etc. use pi, alpha. For example to get 1??2???‾‾‾‾√1πA2BAB use 1/pi*A^2/B*sqrt(AB). Please use the exact variables given in the conditions of the problem: e.g if ?L is given, then do not use ?l.arrow_forwardSuppose you design an apparatus in which a uniformly charged disk of radius R is to produce an electric field. The field magnitude is most important along the central perpendicular axis of the disk, at a point P at distance 2.60R from the disk (see Figure (a)). Cost analysis suggests that you switch to a ring of the same outer radius R but with inner radius R/2.60 (see Figure (b)). Assume that the ring will have the same surface charge density as the original disk. If you switch to the ring, by what part will you decrease the electric field magnitude at P? Number i Units (a) (b)arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON