College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
In the figure, a 3.8 kg block slides along a track from one level to a higher level after passing through an intermediate valley. The track is frictionless until the block reaches the higher level. There a frictional force stops the block in a distance d. The block's initial speed is v0 = 5.8 m/s, the height difference is h = 1.0 m, and μk = 0.579. Find d.
previous question with diff values are
mass of block is m=4.2kg
5.3m/s initial velocity
Height h=1.2m
kinetic friction coefficient is 0.646
d was 0.35 (incorrect)
also put 4 decimal places?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- -PROBLEMS- FRICTION Do the following problems. Draw FBDs. Problems 1 - 4: Show work on a separate sheet. Problem 5: Show work on the worksheet. 1. A 1.4-kg block slides across a rough surface such that it slows down with an acceleration of 1.25 m/s2. What is the coefficient of kinetic friction between the block and the surface? 2. At a wedding reception, you notice a small boy who looks like his mass is about 25 kg running part way across the dance floor, then sliding on his knees until he stops. If the kinetic coefficient of friction between the boy's pants and the floor is 0.15, what is the friction force acting on him when he slides? 3. Joshua is playing cards with his friends, and it is his turn to deal. A card has a mass of 2.3 g, and it slides 0.35 m along the table before it stops. If the coefficient of kinetic friction between the card and the table is 0.24, what was the initial speed of the card as it left Joshua's hand? 4. An 18.0-kg box is released on a 34⁰ incline and…arrow_forward5. A child slides down a slide with a 29° incline, and at the bottom her speed is precisely three-fifths what it would have been if the slide had been frictionless. Calculate the coefficient of kinetic friction between the slide and the child. E BO D TOL Ja B F 4S T T G MacBook Air B Y H U N 8 M MOSISO gearrow_forwardHelp me to solve this question, no handwrittenarrow_forward
- A 356 g block is dropped onto a relaxed vertical spring that has a spring constant of k 1.7 N/cm. The block becomes attached to the spring and compresses the spring 12.6 cm before momentarily stopping. What is the speed of the block just before it hits the spring (assume that friction is negligible)? (Your result must be in m/s and include 1 digit after the decimal point. Maximum of 5% of error is accepted in your answer. Take g-9.8 m/s?.)arrow_forwardPlease answer all parts asap!!!arrow_forwardpervious question: OK, same sort of track, but now with d = 2.12 m. Now suppose the blocks starts on the track at x = 4.10 m. The block is given a push to the left and begins to slide up the track, eventually reaching its maximum height at x = 0, at which point it turns around and begins sliding down. What was its initial speed in this case? New question Here we go again this time, d = 4.09 m. Suppose the block starts on the track at x = 0. What minimum initial velocity (moving to the right) must the block have such that it will leave the track at x = 0 and go into freefall? 12.24 m/s 11.15 m/s 8.96 m/s 6.34 m/sarrow_forward
- 14. In the figure, a 4.0 kg block slides along a track from one level to a higher level after passing through an intermediate valley. The track is frictionless until the block reaches the higher level. There a frictional force stops the block in a distance d. The block's initial speed is vo = 6.0 m/s, the height difference is h = 1.2 m, and uk = 0.40. (1) Find the speed of the block when it just reaches the higher level (2) Find the distance d. μ = 0 -μ*arrow_forwardIn the figure, a 4.2 kg block slides along a track from one level to a higher level after passing through an intermediate valley. The track is frictionless until the block reaches the higher level. There a frictional force stops the block in a distance d. The block's initial speed is vo = 6.3 m/s, the height difference is h = 0.96 m, and Hk = 0.612. Find d. H = 0- Number Unitsarrow_forwardPlease provide complete solution for verification. Thank you!arrow_forward
- QUESTION 8 OK, same sort of track, but now with d = 2.10 m. Now suppose the blocks starts on the track at x = 4.76 m. The block is given a push to the left and begins to slide up the track, eventually reaching its maximum height at x = 0, at which point it turns around and begins sliding down. What was its initial speed in this case? A 8.30 m/s B 14.55 m/s C 10.29 m/s D 17.39 m/sarrow_forwardA block slides along a track with an initial velocity vo = 7.0 m/s from one level to a higher level after passing through an intermediate valley. The difference h from the initial position to the elevated track is 0.89 m. The track is frictionless until reaches the top. There (at the top), a frictional force stops the block in a distance d. The coefficient of kinetic friction between the block and the surface is 0.60. Find the distance d.arrow_forwardPlease asaparrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON