In testing a certain kind or truck tire over rugged terrain, it is found that 20% of the trucks fail to complete the test run without a blowout. Of the next 16 trucks tested, find the probability that (a) from 2 to 6 have blowouts, (b) fewer than 4 have blowouts, and (c) more than 5 have blowouts. Click here to view page 1 of the table of binomial probability sums. Click here to view page 2 of the table of binomial probability sums. (a) The probability that from 2 to 6 trucks have blowouts is (Round to four decimal places as needed.) (b) The probability that fewer than 4 trucks have blowouts is (Round to four decimal places as needed.) (c) The probability that more than 5 trucks have blowouts is (Round to four decimal places as needed.) > > > Binomial Probability Sums b(z;n,p) 1-0 P 0.20 15 2 0.8159 0.3980 0.2361 3 0.9444 0.6482 0.4613 4 12 " 0.10 0.25 0.30 0.40 0.50 0 0.2059 0.0352 0.0134 0.0047 0.0005 0.0000 1 0.5490 0.1671 0.0802 0.0353 0.0052 0.0005 0.0000 0.1268 0.0271 0.0037 0.0003 0.0000 0.2969 0.0905 0.0176 0.0019 0.0001 0.5155 0.2173 0.0592 0.0093 0.0007 0.60 0.70 0.80 0.90 0.0000 5 0.1509 0.0338 0.0037 0.0001 6 0.9873 0.8358 0.6865 0.9978 0.9389 0.8516 0.7216 0.4032 0.9997 0.9819 0.9434 0.8689 0.6098 0.3036 0.0950 0.0152 0.0008 7 1.0000 0.9958 0.9827 0.9500 0.7869 0.5000 0.2131 0.0500 0.0042 0.0000 0.9992 0.9958 0.9848 0.9050 0.6964 0.3902 0.1311 0.0181 0.0003 0.9999 0.9992 0.9963 0.9662 0.8491 0.5968 0.2784 0.0611 0.0022 1.0000 0.9999 0.9993 0.9907 0.9408 0.7827 0.4845 0.1642 0.0127 1.0000 0.9999 0.9981 0.9824 0.9095 0.7031 0.3518 0.0556 1.0000 0.9997 0.9963 0.9729 0.8732 0.6020 0.1841 1.0000 0.9995 0.9948 0.9647 0.8329 0.4510 1.0000 0.9995 0.9953 0.9648 0.7941 1.0000 1.0000 1.0000 1.0000 8 9 10 11 12 13 14 15 16 0 0.1853 1 0.0281 0.0100 0.0033 0.0003 0.0000 0.5147 0.1407 0.0635 0.0261 0.0033 0.0003 0.0000 2 0.7892 0.3518 0.1971 0.0994 0.0183 0.0021 0.0001 0.9316 0.5981 0.4050 0.2459 0.0651 0.0106 0.0009 0.0000 Binomial Probability Sums b(x;n,p) P " " 0.10 0.20 0.25 0.30 0.40 0.50 12 0 0.2824 1 0.0687 0.0317 0.0138 0.0022 0.0002 0.6590 0.2749 0.1584 0.0850 0.0196 0.0032 0.60 0.70 0.0000 0.80 0.90 2 0.8891 0.5583 0.3907 0.2528 0.0834 0.0193 3 4 0.9744 0.7946 0.6488 0.4925 0.2253 0.9957 0.9274 0.8424 0.7237 0.4382 5 0.9995 0.9806 0.9456 6 0.9999 0.9961 0.9857 7 0.8822 0.9614 0.9905 8 9 10 1.0000 11 12 0.0003 0.0000 0.0028 0.0002 0.0000 0.0153 0.0017 0.0001 0.0573 0.0095 0.0006 0.0000 0.1582 0.0386 0.0039 0.0001 0.3348 0.1178 0.0194 0.0005 1.0000 0.9994 0.9972 0.2763 0.0726 0.0043 0.9999 0.9996 0.9983 0.9847 0.9270 0.7747 0.5075 0.2054 0.0256 1.0000 1.0000 0.9998 0.9972 0.9807 0.9166 0.7472 0.4417 0.1109 0.9997 0.9968 0.9804 0.9150 0.7251 0.3410 1.0000 0.9998 0.9978 0.9313 0.7176 0.9862 1.0000 1.0000 1.0000 1.0000 1.0000 0.0730 0.1938 0.6652 0.3872 0.8418 0.6128 0.9427 0.8062 0.5618 1 2 3 13 0 0.2542 0.0550 0.0238 0.0097 0.0013 0.0001 0.0000 0.6213 0.2336 0.1267 0.0637 0.0126 0.0017 0.0001 0.0000 0.8661 0.5017 0.3326 0.2025 0.0579 0.0112 0.0013 0.0001 0.9658 0.7473 0.5843 0.4206 0.1686 0.0461 4 0.9935 0.9009 0.7940 5 0.9991 0.9700 0.9198 6 0.9999 0.9930 0.9757 7 1.0000 8 9 10 11 12 13 14 0 0.2288 0.0440 0.0178 1 0.5846 0.1979 0.1010 2 0.8416 0.4481 3 0.9559 0.6982 0.6543 0.3530 0.1334 0.8346 0.5744 0.2905 0.0078 0.0007 0.0000 0.0321 0.0040 0.0002 0.0977 0.0182 0.0012 0.0000 0.9376 0.7712 0.5000 0.2288 0.0624 0.0070 0.0001 0.9988 0.9944 0.9818 0.9023 0.7095 0.4256 0.1654 0.0300 0.0009 0.9998 0.9990 0.9960 0.9679 0.8666 0.6470 0.3457 0.0991 0.0065 1.0000 0.9999 0.9993 0.9922 0.9539 0.8314 0.5794 0.2527 0.0342 1.0000 0.9999 0.9987 0.9888 0.9421 0.7975 0.4983 0.1339 1.0000 0.9999 0.9983 0.9874 0.9363 0.7664 0.3787 1.0000 0.9999 0.9987 0.9903 0.9450 0.7458 1.0000 1.0000 1.0000 1.0000 1.0000 0.0068 0.0008 0.0001 0.0000 0.0475 0.0081 0.0009 0.0001 0.2811 0.1608 0.0398 0.0065 0.0006 0.0000 0.5213 0.3552 0.1243 0.0287 0.0039 0.0002 0.0000 0.0002 0.0015 4 0.9908 0.8702 0.7415 0.5842 0.2793 0.0898 0.0175 0.0017 0.0000 5 0.9985 0.9561 0.8883 0.7805 0.4859 0.2120 0.0583 0.0083 0.0004 0.9884 0.9617 0.3953 0.0024 0.9998 0.9067 0.6925 0.1501 0.0315 1.0000 0.9976 0.9897 0.9685 0.8499 0.6047 0.3075 0.0933 0.0116 0.9996 0.9978 0.9917 0.9417 0.7880 0.5141 0.2195 0.0439 1.0000 0.9997 0.9983 0.9825 0.9102 0.7207 0.4158 0.1298 0.0092 1.0000 0.9998 0.9961 0.9713 0.8757 0.6448 0.3018 0.0441 1.0000 0.9994 0.9935 0.9602 0.8392 0.5519 0.1584 0.9999 0.9991 0.9919 0.9525 0.8021 0.4154 1.0000 0.9999 0.9992 0.9932 0,9560 0.7712 1.0000 1.0000 1.0000 1.0000 1.0000 6 7 8 9 10 11 12 13 14 " 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 95.5% | -| - C 3 4 0.9830 0.7982 0.6302 0.4499 0.1666 0.0384 0.0049 0.0003 5 0.9967 0.9183 0.8103 0.6598 0.3288 0.1051 0.0191 0.0016 0.0000 7 8 9 10 11 12 13 14 15 16 12 " 0.10 0.20 0.25 0.30 0.40 6 0.9995 0.9733 0.9204 0.8247 0.5272 0.2272 0.0583 0.0071 0.0002 0.9999 0.9930 0.9729 0.9256 0.7161 0.4018 0.1423 0.0257 0.0015 0.0000 1.0000 0.9985 0.9925 0.9743 0.8577 0.0070 0.5982 0.2839 0.0744 0.0001 0.9998 0.9984 0.9929 0.9417 0.7728 0.4728 0.1753 0.0267 0.0005 1.0000 0.9997 0.9984 0.9809 0.8949 0.6712 0.3402 0.0817 0.0033 1.0000 0.9997 0.9951 0.9616 0.8334 0.5501 0.2018 0.0170 1.0000 0.9991 0.9894 0.9349 0.7541 0.4019 0.0684 0.9999 0.9979 0.9817 0.9006 0.6482 0.2108 1.0000 0.9997 0.9967 0.9739 0.8593 0.4853 1.0000 0.9997 0.9967 0.9719 0.8147 1.0000 1.0000 1.0000 1.0000 0.70 0.80 0.90 0.50 0.60
In testing a certain kind or truck tire over rugged terrain, it is found that 20% of the trucks fail to complete the test run without a blowout. Of the next 16 trucks tested, find the probability that (a) from 2 to 6 have blowouts, (b) fewer than 4 have blowouts, and (c) more than 5 have blowouts. Click here to view page 1 of the table of binomial probability sums. Click here to view page 2 of the table of binomial probability sums. (a) The probability that from 2 to 6 trucks have blowouts is (Round to four decimal places as needed.) (b) The probability that fewer than 4 trucks have blowouts is (Round to four decimal places as needed.) (c) The probability that more than 5 trucks have blowouts is (Round to four decimal places as needed.) > > > Binomial Probability Sums b(z;n,p) 1-0 P 0.20 15 2 0.8159 0.3980 0.2361 3 0.9444 0.6482 0.4613 4 12 " 0.10 0.25 0.30 0.40 0.50 0 0.2059 0.0352 0.0134 0.0047 0.0005 0.0000 1 0.5490 0.1671 0.0802 0.0353 0.0052 0.0005 0.0000 0.1268 0.0271 0.0037 0.0003 0.0000 0.2969 0.0905 0.0176 0.0019 0.0001 0.5155 0.2173 0.0592 0.0093 0.0007 0.60 0.70 0.80 0.90 0.0000 5 0.1509 0.0338 0.0037 0.0001 6 0.9873 0.8358 0.6865 0.9978 0.9389 0.8516 0.7216 0.4032 0.9997 0.9819 0.9434 0.8689 0.6098 0.3036 0.0950 0.0152 0.0008 7 1.0000 0.9958 0.9827 0.9500 0.7869 0.5000 0.2131 0.0500 0.0042 0.0000 0.9992 0.9958 0.9848 0.9050 0.6964 0.3902 0.1311 0.0181 0.0003 0.9999 0.9992 0.9963 0.9662 0.8491 0.5968 0.2784 0.0611 0.0022 1.0000 0.9999 0.9993 0.9907 0.9408 0.7827 0.4845 0.1642 0.0127 1.0000 0.9999 0.9981 0.9824 0.9095 0.7031 0.3518 0.0556 1.0000 0.9997 0.9963 0.9729 0.8732 0.6020 0.1841 1.0000 0.9995 0.9948 0.9647 0.8329 0.4510 1.0000 0.9995 0.9953 0.9648 0.7941 1.0000 1.0000 1.0000 1.0000 8 9 10 11 12 13 14 15 16 0 0.1853 1 0.0281 0.0100 0.0033 0.0003 0.0000 0.5147 0.1407 0.0635 0.0261 0.0033 0.0003 0.0000 2 0.7892 0.3518 0.1971 0.0994 0.0183 0.0021 0.0001 0.9316 0.5981 0.4050 0.2459 0.0651 0.0106 0.0009 0.0000 Binomial Probability Sums b(x;n,p) P " " 0.10 0.20 0.25 0.30 0.40 0.50 12 0 0.2824 1 0.0687 0.0317 0.0138 0.0022 0.0002 0.6590 0.2749 0.1584 0.0850 0.0196 0.0032 0.60 0.70 0.0000 0.80 0.90 2 0.8891 0.5583 0.3907 0.2528 0.0834 0.0193 3 4 0.9744 0.7946 0.6488 0.4925 0.2253 0.9957 0.9274 0.8424 0.7237 0.4382 5 0.9995 0.9806 0.9456 6 0.9999 0.9961 0.9857 7 0.8822 0.9614 0.9905 8 9 10 1.0000 11 12 0.0003 0.0000 0.0028 0.0002 0.0000 0.0153 0.0017 0.0001 0.0573 0.0095 0.0006 0.0000 0.1582 0.0386 0.0039 0.0001 0.3348 0.1178 0.0194 0.0005 1.0000 0.9994 0.9972 0.2763 0.0726 0.0043 0.9999 0.9996 0.9983 0.9847 0.9270 0.7747 0.5075 0.2054 0.0256 1.0000 1.0000 0.9998 0.9972 0.9807 0.9166 0.7472 0.4417 0.1109 0.9997 0.9968 0.9804 0.9150 0.7251 0.3410 1.0000 0.9998 0.9978 0.9313 0.7176 0.9862 1.0000 1.0000 1.0000 1.0000 1.0000 0.0730 0.1938 0.6652 0.3872 0.8418 0.6128 0.9427 0.8062 0.5618 1 2 3 13 0 0.2542 0.0550 0.0238 0.0097 0.0013 0.0001 0.0000 0.6213 0.2336 0.1267 0.0637 0.0126 0.0017 0.0001 0.0000 0.8661 0.5017 0.3326 0.2025 0.0579 0.0112 0.0013 0.0001 0.9658 0.7473 0.5843 0.4206 0.1686 0.0461 4 0.9935 0.9009 0.7940 5 0.9991 0.9700 0.9198 6 0.9999 0.9930 0.9757 7 1.0000 8 9 10 11 12 13 14 0 0.2288 0.0440 0.0178 1 0.5846 0.1979 0.1010 2 0.8416 0.4481 3 0.9559 0.6982 0.6543 0.3530 0.1334 0.8346 0.5744 0.2905 0.0078 0.0007 0.0000 0.0321 0.0040 0.0002 0.0977 0.0182 0.0012 0.0000 0.9376 0.7712 0.5000 0.2288 0.0624 0.0070 0.0001 0.9988 0.9944 0.9818 0.9023 0.7095 0.4256 0.1654 0.0300 0.0009 0.9998 0.9990 0.9960 0.9679 0.8666 0.6470 0.3457 0.0991 0.0065 1.0000 0.9999 0.9993 0.9922 0.9539 0.8314 0.5794 0.2527 0.0342 1.0000 0.9999 0.9987 0.9888 0.9421 0.7975 0.4983 0.1339 1.0000 0.9999 0.9983 0.9874 0.9363 0.7664 0.3787 1.0000 0.9999 0.9987 0.9903 0.9450 0.7458 1.0000 1.0000 1.0000 1.0000 1.0000 0.0068 0.0008 0.0001 0.0000 0.0475 0.0081 0.0009 0.0001 0.2811 0.1608 0.0398 0.0065 0.0006 0.0000 0.5213 0.3552 0.1243 0.0287 0.0039 0.0002 0.0000 0.0002 0.0015 4 0.9908 0.8702 0.7415 0.5842 0.2793 0.0898 0.0175 0.0017 0.0000 5 0.9985 0.9561 0.8883 0.7805 0.4859 0.2120 0.0583 0.0083 0.0004 0.9884 0.9617 0.3953 0.0024 0.9998 0.9067 0.6925 0.1501 0.0315 1.0000 0.9976 0.9897 0.9685 0.8499 0.6047 0.3075 0.0933 0.0116 0.9996 0.9978 0.9917 0.9417 0.7880 0.5141 0.2195 0.0439 1.0000 0.9997 0.9983 0.9825 0.9102 0.7207 0.4158 0.1298 0.0092 1.0000 0.9998 0.9961 0.9713 0.8757 0.6448 0.3018 0.0441 1.0000 0.9994 0.9935 0.9602 0.8392 0.5519 0.1584 0.9999 0.9991 0.9919 0.9525 0.8021 0.4154 1.0000 0.9999 0.9992 0.9932 0,9560 0.7712 1.0000 1.0000 1.0000 1.0000 1.0000 6 7 8 9 10 11 12 13 14 " 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 95.5% | -| - C 3 4 0.9830 0.7982 0.6302 0.4499 0.1666 0.0384 0.0049 0.0003 5 0.9967 0.9183 0.8103 0.6598 0.3288 0.1051 0.0191 0.0016 0.0000 7 8 9 10 11 12 13 14 15 16 12 " 0.10 0.20 0.25 0.30 0.40 6 0.9995 0.9733 0.9204 0.8247 0.5272 0.2272 0.0583 0.0071 0.0002 0.9999 0.9930 0.9729 0.9256 0.7161 0.4018 0.1423 0.0257 0.0015 0.0000 1.0000 0.9985 0.9925 0.9743 0.8577 0.0070 0.5982 0.2839 0.0744 0.0001 0.9998 0.9984 0.9929 0.9417 0.7728 0.4728 0.1753 0.0267 0.0005 1.0000 0.9997 0.9984 0.9809 0.8949 0.6712 0.3402 0.0817 0.0033 1.0000 0.9997 0.9951 0.9616 0.8334 0.5501 0.2018 0.0170 1.0000 0.9991 0.9894 0.9349 0.7541 0.4019 0.0684 0.9999 0.9979 0.9817 0.9006 0.6482 0.2108 1.0000 0.9997 0.9967 0.9739 0.8593 0.4853 1.0000 0.9997 0.9967 0.9719 0.8147 1.0000 1.0000 1.0000 1.0000 0.70 0.80 0.90 0.50 0.60
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Please solve this correctly and make sure to round to 4 decimals
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 6 images
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,