College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
In proton-beam therapy, a high-energy beam of protons is fired at a tumor. The protons come to rest in the tumor, depositing their kinetic energy and breaking apart the tumor’s DNA, thus killing its cells. For one patient, it is desired that 0.10 J of proton energy be deposited in a tumor. To create the proton beam, the protons are accelerated from rest through a 20 MV potential difference.
What is the total charge of the protons that must be fired at the tumor to deposit the required energy?
Express your answer with the appropriate units.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An alpha particle (charge +2e) moves through a potential difference ΔV = -0.200 kV. Its initial kinetic energy is 2.40 × 10−16 J. What is its final kinetic energy? need answer in Joulesarrow_forwardThe electric potential difference between the ground and a cloud in a particular thunderstorm is 9.9 × 109 V. What is the magnitude of the change in the electric potential energy of an electron that moves between the ground and the cloud?arrow_forwardTwo plates separated by a distance d = 15.3 mm are charged to a potential difference V = 7.25 V. A constant force F = 8.31 N pushes a –8.30 mC charge from the positively charged plate to the negatively charged plate. Calculate the change in the kinetic energy AK, potential energy AU, and total energy AE of the charge as it travels from one plate to the other. Assume the initial speed of the charge is 0. AK = AU =arrow_forward
- Two plates with area 6.00×10−3 m2 are separated by a distance of 1.50×10−4 m. If a charge of 5.40×10−8 C is moved from one plate to the other, calculate the potential difference (voltage) between the two plates. Assume that the separation distance is small in comparison to the diameter of the plates.arrow_forwardParticle A has a charge of 10uC and a mass of 0.001kg. Particle A starts out at a speed of v = 1000m/s. At some time later, particle A has come to rest. What is the electric potential difference AV from where particle A started to where it stopped? Ignore gravity.arrow_forwardA proton (mass = 1.67 × 10-27 kg, charge = 1.60 × 10-19 C) moves from point A to point B under the influence of an electrostatic force only. At point A the proton moves with a speed of 50 km/s. At point B the speed of the proton is 92.9 km/s. Determine the potential difference VB -VA (in units of А volts). Select one: O A. 24.02 О в. 31.38 Ос. -50.38 O D. -31.99 O E. 2.12arrow_forward
- A potential difference exists between the inner and outer surfaces of the membrane of a cell. The inner surface is negative relative to the outer surface. If 1.25 x 10^-20 J of work is required to eject a positive sodium ion (Na+) from the interior of the cell, what is the magnitude of the potential difference between the inner and outer surfaces of the cell?arrow_forwardA potential difference of 75 mV exists between the inner and outer surfaces of a cell membrane. The inner surface is negative relative to the outer surface. How much work is required to eject a positive sodium ion (Na+) from the interior of the cell?arrow_forwardA potential difference of 90 mV exists between the inner and outer surfaces of a cell membrane. The inner surface is negative relative to the outer surface. How much work is required to eject a positive sodium ion (Na+) from the interior of the cell?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON