College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A singularly-charged ion (i.e. a neutral atom which has gained one electron) with kinetic energy of 7x10−15 J follows a circular path of radius 0.6m when placed in a magnetic field of 0.5T. (Note that the charge of an electron is e = 1.6 x 10−19 C.) a) Using the fact that the ion is going in a circular motion in a magnetic field, what is the ion’s momentum (in kg.m/s)? b) What is the ion’s speed (in m/s)? c) What is the ion’s mass (in kg)? d) An electric field is added to the experiment and adjusted so that the ion passes through without any deflection. What is the magnitude of this electric field (in T)?arrow_forwardi know the direction of the magnetic force on a proton is in the negative y direction and the direction of the magnetic force on an electron is in the positive y directionarrow_forwardDiamagnets have the property that they "dampen" the effects of an external magnetic field by creating an opposing magnetic field. The diamagnet thus has an induced dipole moment that is anti- aligned, such that the induced north pole is closer to the north pole creating the external field. An application of this is that diamagnets can be levitated 2. Now, the mathematics of generally describing a force by a non-uniform field on a dipole is a little beyond the scope of this course, but we can still work through an approximation based on energy. Essentially, whenever the theoretical loss of gravitational potential energy from "falling" no longer can "pay the cost" of increasing the magnetic potential energy, the object no longer wants to fall. Suppose a diamagnetic object floats above the levitator where the magnitude of the magnetic field is 12 T, which is inducing" a magnetic dipole moment of 4.6 LA - m² in the object. The magnetic field 1.9 mm below the object is stronger with a…arrow_forward
- Consider a long, horizontal Large Wire with current of 10 A running through it. We want to levitate a horizontal, thin, 0.50 m length of wire above it. If the thin wire has a mass of 10 grams, and a current of 300 mA, how far above the Large Wire will it hover (net force of zero) due to magnetic and gravitational forces? A. If the thin wire hovers above the Large Wire due to their magnetic fields, are their currents going the same direction, or opposite directions. Explain. B. Draw a diagram and label the directions of currents, and all other relevant quantities and vectors. C. Find the distance above the Large Wire the small thin wire will hover (net force of zero). D. Would your answers to parts A and C change if we wanted to find a distance below (rather than above) the Large Wire that the smaller thin wire could hover, due to their magnetic fields. Explain. Don't calculate any values but draw a new diagram and explain how this situation compares to the problem above.arrow_forwardA particle of charge -2.5 x 10ˉ8 C is moving with an instantaneous velocity of magnitude v = 4 x 10^4 m/s in the X - Y coodinate plane at an angle of 50° anticlockwise from the positive x-axis A) What is the magnitude and direction of the force exerted on this particle by a magnetic field with magnitude 2T in the x-direction? B) Repeat part a) but for the z-directionarrow_forwardcan you help please. This is not and will not be gradedarrow_forward
- Starting from rest, an electron is accelerated through a region between two oppositely charged plates, as shown in Figure 1. The distance between the plates is 10 cm and the magnitude of the potential difference between them is 100 V. Immediately after exiting the region with the uniform electric field, the electron enters a region with a uniform magnetic field of 0.85 T, directed into the page. (a) Calculate the magnitude of the electric force on the electron. (b) Calculate the work done by the electric force on the electron. (c) Determine the electron's speed when it enters the magnetic field. (d) Determine the magnitude and direction of the magnetic force on the electron when it enters the magnetic field. (e) Suppose that the experiment was repeated with the locations of the positive and negative plates switched, and the electron was replaced with a proton, but nothing else was changed. Calculate R,/R., the ratio of the radius of the proton's path in the magnetic field (R,) to that…arrow_forwardAn electron moves at a speed of 810 m/s perpendicular to the direction of a uniform magnetic field of 0.4 T. What is the radius of the electron's circular orbit in units of nanometers (1 m = 10° nm)? (in units of nanometers)arrow_forward(a) A 0.140-kg baseball, pitched at 40.0 m/s horizontally and perpendicular to the Earth’s horizontal 5.00×10−5 T field, has a 100-nC charge on it. What distance is it deflected from its path by the magnetic force, after traveling 30.0 m horizontally? (b) Would you suggest this as a secret technique for a pitcher to throw curve balls?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON