In numbers 3 and 4, evaluate the given Inverse Laplace Transforms. L-1{ 41 41 + + - (s+3)5} s-3 9-1{3+1}

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
f(t)
1.
1
2.
t
3. tn
4. sin kt
5. cos kt
6. sin²kt
7. cos²kt
8. eat
9. t. eat
10. th. eat
11.
eat_ebt
a-b
12. aet-bebt
a-b
Given Laplace Transforms
L {f(t)}
1
S
3
F(s)
n!
s+1, n a positive integer
k
s²+k²2
=
s²+k²
2k²
s(s²+4k²)
s²+2k²
s(s²+4k²)
s-a
(s-a)²
n!
(s-a)n+1, n a positive integer
(s-a)(s-b)
(s-a)(s-b)
Transcribed Image Text:f(t) 1. 1 2. t 3. tn 4. sin kt 5. cos kt 6. sin²kt 7. cos²kt 8. eat 9. t. eat 10. th. eat 11. eat_ebt a-b 12. aet-bebt a-b Given Laplace Transforms L {f(t)} 1 S 3 F(s) n! s+1, n a positive integer k s²+k²2 = s²+k² 2k² s(s²+4k²) s²+2k² s(s²+4k²) s-a (s-a)² n! (s-a)n+1, n a positive integer (s-a)(s-b) (s-a)(s-b)
write the Laplace and Inverse Laplace Transforms in their
most basic forms before evaluating them.
In numbers 3 and 4, evaluate the given Inverse Laplace Transforms.
6
L-1 { 1 + 1 + 3/2²/23
s-3
(s+3)5
3s+2
~
Transcribed Image Text:write the Laplace and Inverse Laplace Transforms in their most basic forms before evaluating them. In numbers 3 and 4, evaluate the given Inverse Laplace Transforms. 6 L-1 { 1 + 1 + 3/2²/23 s-3 (s+3)5 3s+2 ~
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,