College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
In Jellyfish fields, Patrick sees four jellyfish swimming. The first jellyfish has a charge of 58.0µC and is at the origin of a coordinate system. The second jellyfish has a charge of 31.0µC and is located 1.33m up the positive y-axis of the coordinate system. The third jellyfish has a charge of -44.0µC and is located 1.33m along the positive x-axis. The fourth jellyfish has a charge of -38.0µC and is located at the point (1.33m,1.33m) so that the four jellyfish form a square. What is the magnitude of the net force, in Newtons, on the fourth jellyfish, at (1.33m,1.33m) due to the other three jellyfish? Do not include units in your answer.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The charges on three identical metal spheres are -11.4 μC, 3.80 μC, and 1.90 μC. The spheres are brought together so they simultaneously touch each other. They are then separated and placed on the x and y axes, as shown in the figure. Treat the spheres as if they were particles. What is the net force ((a) magnitude and (b) direction) exerted on the sphere at the origin? Express the direction as an angle in the range (-180°, 180°) with respect to the positive x-axis direction. 92 91 4.90mm 4.90 mm 93 -- SUPPO (a) Number i Units (b) Number i Unitsarrow_forwardPlease asaparrow_forwardOne particle has a mass of 3.71 x 103 kg and a charge of +7.56 μC. A second particle has a mass of 7.17 x 103 kg and the same charge. The two particles are initially held in place and then released. The particles fly apart, and when the separation between them is 0.177 m, the speed of the 3.71 x 103 kg-particle is 126 m/s. Find the initial separation between the particles. V1,B V2,B 92 92 91 Number i 0.011 Units m "B 91arrow_forward
- Consider three identical metal spheres, A, B, and C. Sphere A carries a charge of +6q. Sphere B carries a charge of -5g. Sphere C carries no net charge. Spheres A and B are touched together and then separated. Sphere C is then touched to sphere A and separated from it. Last, sphere C is touched to sphere B and separated from it. For the following questions, express your answers in terms of q. (a) How much charge ends up on sphere C? 0.5 (b) What is the total charge on the three spheres before they are allowed to touch each other? 0.25 (c) What is the total charge on the three spheres after they have touched? 0.375 Additional Materials M eBook JAN 12 tv MacBook Air DII 80 F7 F8 F6 esc F4 F5 F1 F2 F3 * 24 %arrow_forward+1.0 uC +4.0 uC -1.0 uC +6.0 µc 13. The drawing shows four charges in which each are placed on the x and y axes. They are all located at the same distance of 5 cm from the origin O. For each of the situations in the drawing, determine the magnitude and direction of the net electric field at the origin. (show each component of the net electric field) (k = 8.99 x 10° Nm2/c2)arrow_forwardTwo charges are placed as shown in (Figure 1) with 91 = 2.8 μC and q2 = −5.1 µC. Figure +91 0.10 m 92 0.10 m 1 of 1 A Barrow_forward
- +3µμC +3μC Charges of 3.0 µC are located at x = 0.0, y = 2.0 m and at x = 0.0, y = -2.0 m. Unknown charges, Q, are located at x = 4.0, y = 2.0 m and at x = 4.0, y = -2.0 m. The electric field at the origin, z = 0.0, y = 0.0 m, is 4.0 x 10³ N/C î (in other words in the r direction). Determine the unknown charge Q.arrow_forwardTwo point charges are placed on the x axis. A charge of qA= +4.54 μC is placed at x= 0 and a charge of qB= -2.87 μC is placed at x=d. When a third point charge qC is placed at x= 2.29d, the electric force on the charge at x= 0 doubles in magnitude but maintains its original direction. What is qC?arrow_forwardOne particle has a mass of 3.71 x 103 kg and a charge of +7.56 µC. A second particle has a mass of 7.17 x 103 kg and the same charge. The two particles are initially held in place and then released. The particles fly apart, and when the separation between them is 0.177 m, the speed of the 3.71 x 103 kg-particle is 126 m/s. Find the initial separation between the particles. V1,B V2,B 92 92 91 Number i Units "B 91arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON