In Exercises 3-6, the vector X is in a subspace H with a basis B = {b₁,b₂}. Find the B-coordinate vector of x. 3. bi 4. bi b₁ -3 = [_] » - [ ] × [ ] , b2 X = -3 - [3] D = [ 3 ] - [ ] b2 X = -3 5 5

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Exercises 3–6: Finding Coordinate Vectors in Subspace**

In Exercises 3–6, the vector \( \mathbf{x} \) is in a subspace \( H \) with a basis \( \mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\} \). Find the \( \mathcal{B} \)-coordinate vector of \( \mathbf{x} \).

**Exercise 3:**
\[ \mathbf{b}_1 = \begin{bmatrix} 1 \\ -4 \end{bmatrix}, \mathbf{b}_2 = \begin{bmatrix} -2 \\ 7 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} -3 \\ 7 \end{bmatrix} \]

**Exercise 4:**
\[ \mathbf{b}_1 = \begin{bmatrix} 1 \\ -3 \end{bmatrix}, \mathbf{b}_2 = \begin{bmatrix} -3 \\ 5 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} -7 \\ 5 \end{bmatrix} \]
Transcribed Image Text:**Exercises 3–6: Finding Coordinate Vectors in Subspace** In Exercises 3–6, the vector \( \mathbf{x} \) is in a subspace \( H \) with a basis \( \mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\} \). Find the \( \mathcal{B} \)-coordinate vector of \( \mathbf{x} \). **Exercise 3:** \[ \mathbf{b}_1 = \begin{bmatrix} 1 \\ -4 \end{bmatrix}, \mathbf{b}_2 = \begin{bmatrix} -2 \\ 7 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} -3 \\ 7 \end{bmatrix} \] **Exercise 4:** \[ \mathbf{b}_1 = \begin{bmatrix} 1 \\ -3 \end{bmatrix}, \mathbf{b}_2 = \begin{bmatrix} -3 \\ 5 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} -7 \\ 5 \end{bmatrix} \]
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,