College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
In a standard RLC circuit that we are looking at
R = 0.075 Ω , L = 1.2 H and C = 1.6 F. The initial charge carries by the capacitor is Q0 = 0.045 C. The switch is closed at time t = 0.
Calculate the value of Q, in coulombs,
at time t = 1s.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Similar questions
- Consider the circuit below. C, = 200 mF R, = 11 kn V, = 24 V R, = 11 kQ V 24 V R = 33 k. R, = 33 kN (a) What is the RC time constant of the circuit (in s)? (b) What is the initial current (in A) in the circuit once the switch is closed? A (c) How much time (in s) passes between the instant the switch is closed and the time the current has reached half of the initial current?arrow_forwardAn electric circuit has a battery with an EMF of 1.50 V. Its positive terminal is connected to itsnegative terminal by a copper wire in a circular loop having a radius of 0.500 m. Solve for thedrift velocity in the wire if there is one free electron per copper atom. Detailed assumptions:- The size of the cell is negligible compared to the length of the circuit.- Copper resisitivity: { = 1.80×10−8 Ω-m- Copper density: D = 8.96×103 kg-m−3- Copper relative atomic mass: ma = 63.5 g/molarrow_forwardIn the circuit of the figure ℰ = 3.30 kV, C = 6.60 μF, R1 = R2 = R3 = 0.740 MΩ. With C completely uncharged, switch S is suddenly closed (at t = 0). At t = 0, what are (a) current i1 in resistor 1, (b) current i2 in resistor 2, and (c) current i3 in resistor 3? At t = ∞ (that is, after many time constants), what are (d)i1, (e)i2, and (f)i3? What is the potential difference V2 across resistor 2 at (g)t = 0 and (h)t = ∞? Answer parts d, e, and f pleasearrow_forward
- e f garrow_forward9V 20Ω A cylindrical solenoid 50 cm long with a radius of 6 mm has 400 tightly-wound turns of wire uniformly distributed along its length (see the figure). Around the middle of the solenoid is a two-turn rectangular loop 3 cm by 2 cm made of resistive wire having a resistance of 180 . One microsecond after connecting the loose wire to the battery to form a series circuit with the battery and a 200 resistor, what is the magnitude of the current in the rectangular loop and its direction (clockwise or counter-clockwise in the diagram)? (The battery has an emf of 9 V.) Aarrow_forwardThe capacitor in the circuit shown is fully charged by a 24 V battery. The switch is closed at t = 0. At sometime after the switch is closed, the voltage across the capacitor is measured to be 10 V. What is the current in the circuit at this time, in Ampere? C = 3.0 µF, and R = 2.0 02. Your answer needs to have 2 significant figures, including the negative sign in your answer if needed. Do not include the positive sign if the answer is positive. No unit is needed in your answer, it is already given in the question statement. Cilarrow_forward
- The figure below shows a capacitor, with capacitance C = 45.0 µF, and a resistor, with resistance R = 60.0 kN, connected in series to battery, with & = 15.0 V. The circuit has a switch, which is initially open. R (a) What is the circuit's time constant (in s)? (b) After the switch is closed for one time constant, how much charge (in C) is on the capacitor?arrow_forwardA 1·21-MF Capacitor is connected to a North American electrical outlet. (AVrms = 120V₁ f = 60.0Hz). Assuming the energy stored in the Capacitor is Zero at + = 0, determine the magnitude & the current in the wires at t = 192 Note: Answer must be in A. S.arrow_forwarda-c would be greatarrow_forward
- the image shows a circuit with the emf ε = 24 V, the capacitance C = 3 µF. The resistances areR1 = 2 Ω, R2 = 4 Ω, and R3 = 6 Ω. We keep the switch S closed for a long time, under thiscondition a) Briefly explain the state of the capacitor a long time after the switch is closed.b) Calculate the current flowing in R3 (after a long time). Justify your answer.c) Apply Kirchhoff’s Loop Rule to calculate the total current I delivered by the emf, which flowsthrough R1 (after a long time).arrow_forwardIn the circuit of the figure ℰ = 3.30 kV, C = 6.60 μF, R1 = R2 = R3 = 0.740 MΩ. With C completely uncharged, switch S is suddenly closed (at t = 0). At t = 0, what are (a) current i1 in resistor 1, (b) current i2 in resistor 2, and (c) current i3 in resistor 3? At t = ∞ (that is, after many time constants), what are (d)i1, (e)i2, and (f)i3? What is the potential difference V2 across resistor 2 at (g)t = 0 and (h)t = ∞? Answer parts a, b, and c pleasearrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON