Question
In a photoelectric experiment visible/white light (λ = 400 to 700nm) falls on a metal with work function of? = 2.48eV.
-
a) What is the range of wavelengths (λmin, λmax) of visible light that ejects electrons from the metal?
-
b) What is the maximum speed of photoelectrons?
-
c) What is the stopping potential?
-
d) If a 15 mW laser of λ = 450 nm is used, how many photons are emitted each second?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 4 steps
Knowledge Booster
Similar questions
- Light of wavelength 350 nm falls on a potassium surface, and the photoelectrons have amaximum kinetic energy of 1.3 eV.What is the work function of potassium?The speed of light is 3 × 108 m/s and Planck’sconstant is 6.63 × 10−34 J · s.Answer in units of eV. What is the threshold frequency for potassium?Answer in units of Hz.arrow_forwardA metal surface has a photoelectric cutoff wavelength of 325.6 nm. It is illuminated with light of wavelength 259.8 nm. What is the stopping potential?arrow_forwardYou set up a photoelectric experiment with an unknown metal to eject electrons. You use light of wavelength λ = 670 nm, which just BARELY ejects electrons from the metal. Planck□s constant is either h = 6.63 x 10-34 J-s or h = 4.14 x 10-15 ev.s. a) What is the binding energy of the unknown metal in eV? ev b) You change the light source to one with a wavelength of λ = 310 nm. Using the binding energy you found in the previous step, find the maximum kinetic energy of an electron that is ejected from the metal in Joules. J c) What is the stopping voltage for an electron with the kinetic energy you just found? Varrow_forward
- UV radiation having a wavelength of 146 nm falls on gold metal, to which electrons are bound by 4.82 eV. What is the maximum velocity of the ejected photoelectrons? No need to use relativistic formulas in this case.arrow_forwardA light source of wavelength λ illuminates a metal and ejects photo electrons with a maximum kinetic energy of 0.67 eV. A second light source with half the wavelength of the first ejects photoelectrons with a maximum kinetic energy of 3.3 eV. What is the work function of the metal? Answer in units of eV.arrow_forwardA monochromatic light source illuminates the surface of metal X. The maximum kinetic energy of electrons leaving the surface of the metal is shown in the graph above.An ammeter is connected to the standard photoelectric effect circuit to measure the photoelectric current arising from the electrons moving between the cathode and anode of the vacuum tube containing the illuminated sample. The current is found to be 12.4mA when the metal is illuminated with a wavelength of 184.2nm.What is the energy (eV) of the photons striking metal X?arrow_forward
- A beam of 400 nm light is adjusted to have the same intensity as a beam of 600 nm light. How does the number of photons in the 400nm beam, N400 compare to the number of photons, N600 in the 600 nm beam. Question 5 options: N400 = 2*N600 N400 = 32600 N400 = N600 N400 = 23600 N400 = 2600 None of the other responses are correct.arrow_forwardA) After a 0.790 nm x-ray photon scatters from a free electron, the electron recoils with a speed equal to 1.59E+6 m/s. What was the Compton shift in the photon's wavelength? B) Through what angle was the photon scattered?arrow_forwards) The cutoff frequency of a specific metal is known to be 0.72x1015Hz. During a photoelectric experiment, 3.7x102º photons with a wavelength of 167nm are striking a plate every second. What is the power of the photons and what is the maximum kinetic energy of the ejected electrons?arrow_forward
arrow_back_ios
arrow_forward_ios