Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Question
thumb_up100%
In a cast-iron piping system of 450 ft length shown below, the rate of flow
is 1 cfs at 70°F. Assuming the total head losses for the flow in the system is 10 ft,
what is the energy head supplied by the pump E?
a. 40 ft
b. 50 ft
c. 60 ft
d. 510 ft
e. None of the above
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- As shown in the picture blew, a pump can deliver volume flow rate of of water through a vertical lift of . The inlet to the pump is just below the water surface and the discharge is to the atmosphere through a DN50 schedule 40 steel pipe. The energy loss . (1) Calculate velocity at the exit of point 2__________m/sarrow_forwardProblem 2 A pump is needed in a water supply system. The water is being pumped out of a ground-level storage reservoir with water surface elevation of 149.27 ft and needs to pass over a hill 2 miles away, where the pipe centerline is at elevation 200.00 ft. The flowrate is 22 mgd, pipe diameter is 24 inches, Hazen-Williams friction factor is 110, and pressure at the crest of the hill must be at least 20 psi. (a) What head must the pump provide? (b) How much power will be added to the water? (c) What size motor should be purchased if the pump/motor combination has an efficiency of 80 percent?arrow_forwardFor the following pump-pipe system below, how will the discharge and pump head change if a smaller pump in the same family is used to replace the current pump? Increase or decrease? EB EA Head (ft) 350 300 250 225 200 150 100 50 0 0 5 10 O Pump head will decrease; discharge will decrease. O Pump head will increase; discharge will increase. O Pump head will increase; discharge will increase. O Pump head will decrease; discharge will increase. 15 20 Discharge (cfs) System head curve 25 H₂ -Intersection point Pump characteristics 30 35 40arrow_forward
- Example -5.2- It is required to pump cooling water from storage pond to a condenser in a process plant situated 10 m above the level of the pond. 200 m of 74.2 mm i.d. pipe is available and the pump has the characteristics given below. The head loss in the condenser is equivalent to 16 velocity heads based on the flow in the 74.2 mm pipe. If the friction factor = 0.003, estimate the rate of flow and the power to be supplied to the pump assuming n = 0.5 Q (m³/s) 0.0028 0.0039 0.005 0.0056 0.0059 Ah (m) 23.2 21.3 18.9 15.2 11.0arrow_forwardDraw and describe a simplified diagram of a section of an industrial sugar and alcohol piping system, which contains the following equipment: 1 Pump 1 Heat Trocador Elbows for changing the flow path Flux Valves The ultimate goal is to calculate system and pump pressure losses.arrow_forward6- The following reading were taken during a test on a surface condenser: Mean condenser temperature = 35°C Hot well temperature = 30°C Condenser vacuum = 69 cm Hg Barometer reading = 76cmHg Condensation rate = 16 kg/min Cooling water temperature inter = 20 °C Cooling water temperature outlet = 32.5 °C Flow rate being = 37500 kg/h Calculate: a- mass of air present per cubic meter of condenser b- quality of steam at condenser inlet c- vacuum efficiency d- condenser efficiency (condenser heat transfer effeteness)arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY