Chemistry
Chemistry
10th Edition
ISBN: 9781305957404
Author: Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher: Cengage Learning
Bartleby Related Questions Icon

Related questions

Question

I only need help with part b

The ideal gas law, discovered experimentally, is an
equation of state that relates the observable state
variables of the gas--pressure, temperature, and density
(or quantity per volume):
PV = NkBT (or pV = nRT),
Figure
Lx
1 of 1
Part B
Imagine that the container from the problem introduction is now filled with N identical gas particles of
mass m. The particles each have different x velocities, but their average x velocity squared, denoted
(v²), is consistent with the Equipartition Theorem.
Find the pressure p on the right-hand wall of the container.
Express the pressure in terms of the absolute temperature T, the volume of the container V
(where V = L₂LyLz), kB, and any other given quantities. The lengths of the sides of the
container should not appear in your answer.
▸ View Available Hint(s)
p=
[Π ΑΣΦ
Submit
?
expand button
Transcribed Image Text:The ideal gas law, discovered experimentally, is an equation of state that relates the observable state variables of the gas--pressure, temperature, and density (or quantity per volume): PV = NkBT (or pV = nRT), Figure Lx 1 of 1 Part B Imagine that the container from the problem introduction is now filled with N identical gas particles of mass m. The particles each have different x velocities, but their average x velocity squared, denoted (v²), is consistent with the Equipartition Theorem. Find the pressure p on the right-hand wall of the container. Express the pressure in terms of the absolute temperature T, the volume of the container V (where V = L₂LyLz), kB, and any other given quantities. The lengths of the sides of the container should not appear in your answer. ▸ View Available Hint(s) p= [Π ΑΣΦ Submit ?
The ideal gas law, discovered experimentally, is an
equation of state that relates the observable state
variables of the gas--pressure, temperature, and density
(or quantity per volume):
PV = NkBT (or pV = nRT),
Figure
L₂
Lx
1 of 1
Part A
Find the magnitude of the average force (F) in the x direction that the particle exerts on the right-hand
wall of the container as it bounces back and forth. Assume that collisions between the wall and particle
are elastic and that the position of the container is fixed. Be careful of the sign of your answer.
Express the magnitude of the average force in terms of m, vr, and L₂.
► View Available Hint(s)
Submit
Part B
IVE ΑΣΦ
?
Imagine that the container from the problem introduction is now filled with N identical gas particles of
mass m. The particles each have different x velocities. but their average x velocity squared. denoted
expand button
Transcribed Image Text:The ideal gas law, discovered experimentally, is an equation of state that relates the observable state variables of the gas--pressure, temperature, and density (or quantity per volume): PV = NkBT (or pV = nRT), Figure L₂ Lx 1 of 1 Part A Find the magnitude of the average force (F) in the x direction that the particle exerts on the right-hand wall of the container as it bounces back and forth. Assume that collisions between the wall and particle are elastic and that the position of the container is fixed. Be careful of the sign of your answer. Express the magnitude of the average force in terms of m, vr, and L₂. ► View Available Hint(s) Submit Part B IVE ΑΣΦ ? Imagine that the container from the problem introduction is now filled with N identical gas particles of mass m. The particles each have different x velocities. but their average x velocity squared. denoted
Expert Solution
Check Mark
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY