College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
(II) Car A hits car B (initially at rest and of equal mass) from behind while going 38 m/s Immediately after the collision, car B moves forward at 15 m/s and car A is at rest. What fraction of the initial kinetic energy is lost in the collision?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A truck with a mass of 2020 kg and moving with a speed of 17.0 m/s rear-ends a 832 kg car stopped at an intersection. The collision is approximately elastic since the car is in neutral, the brakes are off, the metal bumpers line up well and do not get damaged. (a) Calculate the initial momentum of the truck (in kg m/s). kg m/s (b) Calculate the final velocities (in m/s) for the truck and the car. vtf= m/svcf= m/s (c) Calculate the total momentum (in kg m/s) of the truck AND the car after the collision. kg m/s (d) Did you expect the results that you got for Part (a) and (c)? Yes, since momentum is conserved in a collision with no external forces acting on the colliding objects.No, since there were no forces acting on either the car or the truck during the collision. No, since kinetic energy may not be conserved.Yes, since the collision is inelastic.arrow_forwardIf two particles have equal kinetic energies, are their momenta equal?arrow_forwardA truck with a mass of 1570 kg and moving with a speed of 17.5 m/s rear-ends a 652 kg car stopped at an intersection. The collision is approximately elastic since the car is in neutral, the brakes are off, the metal bumpers line up well and do not get damaged. (a) Calculate the initial momentum of the truck (in kg m/s). kg m/s (b) Calculate the final velocities (in m/s) for the truck and the car. Vf = m/s Vf = m/s (c) Calculate the total momentum (in kg m/s) of the truck AND the car after the collision. kg m/s (d) Did you expect the results that you got for Part (a) and (c)? O No, since kinetic energy may not be conserved. O Yes, since the collision is inelastic. O No, since there were no forces acting on either the car or the truck during the collision. O Yes, since momentum is conserved in a collision with no external forces acting on the colliding objects.arrow_forward
- What is true about the total momentum before and after the collision?arrow_forwardA truck with a mass of 1480 kg and moving with a speed of 17.0 m/s rear-ends a 732 kg car stopped at an intersection. The collision is approximately elastic since the car is in neutral, the brakes are off, the metal bumpers line up well and do not get damaged. (a) Calculate the initial momentum of the truck (in kg m/s). kg m/s (b) Calculate the final velocities (in m/s) for the truck and the car. vtf= m/svcf= m/s (c) Calculate the total momentum (in kg m/s) of the truck AND the car after the collision. kg m/s (d) Did you expect the results that you got for Part (a) and (c)? Yes, since the collision is inelastic. No, since there were no forces acting on either the car or the truck during the collision. Yes, since momentum is conserved in a collision with no external forces acting on the colliding objects. No, since kinetic energy may not be conserved.arrow_forwardA railroad car of mass M moving at a speed v 1 collides and couples with twocoupled railroad cars, each of the same mass M and movingin the same direction at a speed v 2. (a) What is the speed vf ofthe three coupled cars after the collision in terms of v 1 and v 2?(b) How much kinetic energy is lost in the collision? Answerin terms of M, v 1, and v 2.arrow_forward
- A bumper car A (m. = 140 kg) with a velocity of 15 km/h hits a another car B (m = 160 kg) which was immobile before impact. The collision is perfectly elastic and the frictions are considered negligible.Calculate the time at which the dodgems are 2 m apart from each otherafter the collision.arrow_forwardNonearrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON