If x₁ is orthonormal set i=1,2,...,n in a Hilbert space and xEH then |x-₁=₁(x,x₁)|x₁||² = (x,x) - Σ₁(x,x₁)|² Option 1 ≤||x||² i=1 ||(x,x₁)x; ||² n = |x||² - 11(x,x₁)x,11²2 Option 3 i=1 ≤||x||²₁||x||²2 ||x; ||²

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
/e/1FAIpQLSeh-VXHk0Cg791RQsReSpIMDQXIDDskMHz19h3n-11mOaL6iA/F
If x; is orthonormal set i=1,2,...,n in a Hilbert space and
xEH then ||x - Σ₁₁(x, x₁)|x₁|1²
= (x,x) – Σ,{x,x;}|2
Option 1
≤ ||1x||² - ||(x,x₁)x₁||²
i=1
n
=
= ||x|1|² - Σ||(x,x;>x;||²2
Option 3
i=1
≤||x||²₁||x||² ||x; ||²2
Transcribed Image Text:/e/1FAIpQLSeh-VXHk0Cg791RQsReSpIMDQXIDDskMHz19h3n-11mOaL6iA/F If x; is orthonormal set i=1,2,...,n in a Hilbert space and xEH then ||x - Σ₁₁(x, x₁)|x₁|1² = (x,x) – Σ,{x,x;}|2 Option 1 ≤ ||1x||² - ||(x,x₁)x₁||² i=1 n = = ||x|1|² - Σ||(x,x;>x;||²2 Option 3 i=1 ≤||x||²₁||x||² ||x; ||²2
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,