Concept explainers
Greg Huegel, a Clemson All-American placekicker and former PHYS 2070 student, was nicknamed “The Grocery Store Kicker” by Dabo Swinney after being discovered as a walk on. When kicking a football, the kicker rotates his leg about the hip joint. As we proceed through this question, you will have to pull on information from past tests.
If the velocity of the tip of the kicker’s shoe is 33.5 m/s and the hip joint is 1.25 m from the tip of the shoe, what is the shoe tip’s
The shoe is in contact with the initially nearly stationary 0.500 kg football for 20.0 ms. What average force is exerted on the football in Newtons to give it a velocity of 20.5 m/s?
find the maximum range of the football in meters, neglecting air resistance.
Step by stepSolved in 3 steps with 3 images
- A drag racer driving around a circular track has a centripetal acceleration of 5 m/s2 and a tangential acceleration of -2 m/s2. What is the magnitude of the total acceleration of the car?arrow_forwardIn the game of tetherball, a ball is hung from a vertical pole via a 0.75m rope. The rope is allowed to pivot freely from the top of the pole so the ball can swing around the pole. If the angle of the rope is 30° with respect to the pole, how much time does it take the ball to make one complete revolution around the pole?arrow_forwardThe Special Olympics raises money through "plane pull" events in which teams of 25 people compete to see who can pull a 74,000 kg airplane 3.7 m across the tarmac. The inertia of the plane is an issue--but so is the 14,000 N rolling friction force that works against the teams.If a team pulls with a constant force and moves the plane 3.7 m in 6.1 s (an excellent time), what fraction of the team's work goes to thermal energy?arrow_forward
- A thread is wrapped around a cylindrical spool, of radius R = 2.0 cm, whose central axis is fixed on a support. Somebody’s hand pulls the thread off the spool. This causes the spool to rotate. The acceleration of the person’s hand is constant. Starting from rest, it takes 10 seconds for 5.0 meters of thread to be pulled off. What is the angular speed of the spool at time t = 2.0 s?arrow_forwardHi, today I had my engineering mechanics 1 test which I completely screwed up. I was quite confident in the uniform circular motion, but I had this problem in my exam which completely confused me. When I read "upward vertical acceleration" my head just start to spin as I couldn't understand what force could cause an upward acceleration. Could you help me with this problem? I bet it is easier than it looks, but still, I am confused about what is asking me and most importantly about the input it is giving me. I don't have my exam paper with me, but on my body diagram, I knew that on the aeroplane were exerted the Force of Contact Fn1 and the Force m1g in the y opposite direction. On the pilot was acting the Force of Contact with the seat of the aeroplane Fn2 and the m2g in the y opposite direction. Here is the problem: During an air show an aircraft comes out of a dive at the bottom of a circular arc at a horizontal speed of 97m/s. In the cockpit the aircraft pilot of mass 58kg…arrow_forwardThe cable lifting an elevator is wrapped around a 1.2-m-diameter cylinder that is turned by the elevator's motor. The elevator is moving upward at a speed of 1.9 m/s . It then slows to a stop, while the cylinder turns one complete revolution.How long does it take for the elevator to stop?arrow_forward
- How fast (in rpm) must a centrifuge rotate if a particle 7.5 cm from the axis of rotation is to experience an acceleration of 2.0×105 g's? Express your answer using two significant figures.arrow_forwardI am stuck on this practice question. It is a multi-step question that I am stuck on how to answer. It is asking What’s the total distance traveled by the bug between t = 0 s and the time when the record comes to a stop? I need to first do the following: Calculate the magnitude of the initial tangential velocity of the bugat t = 0 s How long does it take for the bug to come to a stop?arrow_forwardThe bus's wheels have a radius 26 cm. The bus starts at rest and accelerates at a constant speed until it reaches an angular speed of 10.4 rev/s. During this period, the bus moved 100 m. How many revolutions does the wheel go through?arrow_forward
- You have a horizontal grindstone (a disk) that is 87 kg, has a 0.31 m radius, is turning at 94 rpm (in the positive direction), and you press a steel axe against the edge with a force of 23 N in the radial direction. The kinetic coefficient of friction between steel and stone is 0.20. What is the number of turns, N, that the stone will make before coming to rest?arrow_forwardA Ferris wheel has a radius of 30 m and its centre is 32 m above the ground. It rotates once every 48 s. Ethan gets on the Feris wheel at the lowest point and then the wheel starts to rotate. The amount of time it takes Ethan to reach 38 m above the ground for the first time, to the nearest tenth of a second, is S. Your answerarrow_forwardTo withstand "g-forces" of up to 10 g's, caused by suddenly pulling out of a steep dive, fighter jet pilots train on a "human centrifuge." 10 g's is an acceleration of 98 m/s². If the length of the centrifuge arm is 15.0 m, at what speed is the rider moving when she experiences 10 g's? Express your answer with the appropriate units.arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON