College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
- A man pulls a box from rest with a horizontal force F across a frictionless surface a distance d.
(a) If he were to repeat this process by pulling the rope at an angle of 20° above the horizontal, the final velocity of the box
____ increases ____ decreases ____ stays the same
Justify your answer.
What happens to the magnitude of the normal force when the box is pulled at an angle?
____ increases _____ decreases ____stays the same
Justify your answer.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 1 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The figure below shows an object with mass m = 5.1 kg pulled up a ramp inclined at an angle of θ = 29° with a force of magnitude F = 33 N parallel to the ramp. (a) If there is no friction between the object and the ramp, what is the magnitude of the object's acceleration (in m/s2)? m/s2 (b) If instead the coefficient of kinetic friction between the object and the ramp is 0.12, what is the magnitude of the object's acceleration (in m/s2)? m/s2arrow_forwardA 1,500-N crate is being pushed across a level floor at a constant speed by a force F of 370 N at an angle of 20.0° below the horizontal, as shown in the figure a below. F 20.0° / b 20.0° (a) What is the coefficient of kinetic friction between the crate and the floor? (Enter your answer to at least three decimal places.) 0.220 X Your response is within 10% of the correct value. This may be due to roundoff error, or you could have a mistake in your calculation. Carry out all intermediate results to at least four-digit accuracy to minimize roundoff error.arrow_forwardA man wants to move a heavy wooden crate (82 kg) across a wooden floor. However, since he is taller than the crate, he must pull it using a rope that makes an angle of 42 degrees with the horizontal. He exerts a force of 312 N as he pulls. What is the Normal Force exerted by the floor on the crate? What is the size of the Friction Force felt by the crate, if the crate moves at a constant speed in a straight line? Imagine that instead the floor is more slick, so that the crate feels a friction force half of what you calculated above. What is the crate’s acceleration?arrow_forward
- Two crates of fruit are released from the top of a ramp inclined at 30 degrees from the horizontal and 4.5 meter long. The two crates consist of an apple crate of mass 20 kg that is placed in front of a watermelon crate of mass 80 kg. The apple crate has a coefficient of friction of 0.20 while the watermelon crate has a coefficient of friction of 0.15. How long does it take the apple crate to reach the bottom of the incline if it needs to travel a distance of 4.5 meters?arrow_forwardProblem 3: A 38.8-kg crate is being pushed at a constant speed by a force of 311 N at an angle of 29 degrees below the horizontal, as shown. Part (a) What is the coefficient of kinetic friction between the crate and the floor? Numeric : A numeric value is expected and not an expression. Uk = Part (b) If the force is pulling at 29 degrees above the horizontal instead of below, as shown, what is the acceleration of the crate in m/s2, assuming the coefficient of friction is the same as in the previous part? Numeric : A numeric value is expected and not an expression. a =arrow_forwardQuestion 1arrow_forward
- The motion of a body is described by the equation 4.90 sin (0.170πt) where t is in s and y is in m. (a) Find the amplitude.(b) Find the period.(c) Find the frequency.(d) Find the displacement at t = 5.00 s.(e) Find the displacement at t = 30.0 s.arrow_forwardBlock 1 (10 kg) is pulled by a rope from left to right up a ramp which is inclined 50 degrees from the horizontal. The rope pulls on block 1 with a force of 150 N parallel to the surface of the inclined plane. The coefficient of kinetic friction between the block and the surface equals 0.3. Weight force on block 1 by EarthW1E = i + j N Tension force on block 1 by RopeT1R = i + j N Normal force on block 1 by SurfaceN1S = i + j N Frictional force on block 1 by Surfacef1S = i + j N What is the acceleration a of block 1?a = i + j m/s2arrow_forwardAn object with a mass of m placed on an oblique surface at an angle. We applied a horizontal force f = mg on the particle as shown. Assume that the friction force between the object and the surface is so large that the object remains in place? Find the vertical force FN and the friction force ff ? In terms of the static friction coefficient, what is the range of the angle at which the object remains stagnant?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON