Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN: 9780133923605
Author: Robert L. Boylestad
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 4 steps with 4 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The single line diagram of a power system is shown in Figure Q2.1 includinggenerator and transformer winding connection and earthing details. The parametersfor this system have been calculated on a common 100 MVA base and are given inTable Q2.1. All resistances and shunt susceptances are neglected. This systemexperiences a single line to ground fault at a point F on line L1. The point F is at adistance d from Bus 4 along the line L1. The total length l of the line L1 is 50 km.Note that the location of d is not drawn to scale in Figure Q2.1. The fault current atthe fault point F is measured to be 6.106 kA. i) Determine the zero, positive, and negative sequence Thevenin equivalentimpedances as seen at the fault point F. These should be evaluated in per unitand shown as a function of d.ii) Use the sequence impedances calculated in part (i) to determine the distance dof the fault (in km) from Bus 4. It's different from the answer, please don't send itarrow_forward1. FIGURE 52 shows the one-line diagram of a simple three-bus power system with generation at bus I. The voltage at bus l is V1 = 1.0L0° per unit. The scheduled loads on buses 2 and 3 are marked on the diagram. Line impedances are marked in per unit on a 100 MVA base. For the purpose of hand calculations, line resistances and line charging susceptances are neglected a) Using Gauss-Seidel method and initial estimates of Va 0)-1.0+)0 and V o)- ( 1.0 +j0, determine V2 and V3. Perform two iterations (b) If after several iterations the bus voltages converge to V20.90-j0.10 pu 0.95-70.05 pu determine the line flows and line losses and the slack bus real and reactive power. 2 400 MW 320 Mvar Slack 0.0125 0.05 300 MW 270 Mvar FIGURE 52arrow_forwardExplain the advantages and applications of high-voltage direct current (HVDC) transmission in power systems. Provide examples.arrow_forward
- Describe the various methods used for long-distance power transmission, such as HVDC (High Voltage Direct Current) and UHV (Ultra High Voltage).arrow_forwardGive example scenarios in 'Power Grid Extension' and explainarrow_forwardThe reactance data for the power system shown in below figure in per unit ona common base is as the following: X²_x² j0.1 G₁ to j0.25 Ti Select one: O a. No right answer O b.-12.19 pu O c.-14.986 pu O d.-) 3.806 pu 2 j0.3 + AL j0.05 j0.25 Assume that the pre fault voltage at bus 2 = 1 pu. For bolted line (b) to line (c) fault at bus 2, the fault current is = j0.5 3 j0.25 T₂ 4 38 + A j0.25 j0.1 G₂ j0.05arrow_forward
- b) A fault occurs at bus 3 of the network shown in Figure Q4. Pre-fault nodal voltages throughout the network are of 1 p.u. and the impedance of the electric arc is neglected. Sequence impedance parameters of the generator, transmission lines, transformer and load are given in Figure Q4. V₁ = 120° p.u. V₂ = 120° p.u. V₂ = 1/0° p.u. V₂= 120° p.u. jXj0.1 p.u. JX2) 0.1 p.u. jX0j0.15 p.u. jXn-j0.2 p.u. 1 JX(2)-j0.2 p.u. 2 jX)=j0.25 p.u. JX20-10.15 p.u. jXa(z)-j0.2 p.u. 4 jX2(0)=j0.2 p.u. jXT(1) j0.1 p.u. jXT(2)=j0.15 p.u. jXT(0)=j0.1 p.u. Figure Q4. Circuit for problem 4b). = jXj0.1 p.u. j0.1 p.u. - JX(2) JXL(0) 10.1 p.u. = (i) Assuming a balanced excitation, draw the positive, negative and zero sequence Thévenin equivalent circuits as seen from bus 3. (ii) Determine the positive sequence fault current for the case when a three- phase-to-ground fault occurs at bus 3 of the network. (iii) Determine the short-circuit fault current for the case when a one-phase- to-ground fault occurs at bus…arrow_forward25. Write the necessity of power supply and briefly describe different types of SMPS and UPS.arrow_forwardQuestion Aarrow_forward
- Consider the mobile communication system shown in Figure 2. Assume the tower is providing mobile communication to a cellphone user. The height of the base station (BS) tower is 100m. Assume the elevation of the cellphone from the ground is 2 m, which is insignificant and can be ignored. Assume the smartphone needs at least -50dBm of received power from the base station in order to be able to communicate. Assume the transmit power at the base station is 40dBm, the transmitter and receiver gains are 5 and 2, respectively. The cell phone operates at 1900MHz carrier frequency. B5 h 100m BS_MS_D Figure 2 a) Calculate how far you can be away from the base station (i.e., BS_MS_D distance) and still be within communication range of the base station, i.e., be able to receive the signal sent from the BS. You may use link budget analysis discussed in class. What should be the transmit power of the BS to allow the range R = 21 and still be able to communicate with the BS? Calculate the Path Loss…arrow_forwardThe single line diagram of a power system is shown in Figure Q2.1 including generator and transformer winding connection and earthing details. The parameters for this system have been calculated on a common 100 MVA base and are given in Table Q2.1. All resistances and shunt susceptances are neglected. This system experiences a single line to ground fault at a point F on line L1. The point F is at a distance d from Bus 4 along the line L1. The total length ?? of the line L1 is 50 km. Note that the location of ?? is not drawn to scale in Figure Q2.1. The fault current at the fault point F is measured to be 6.106 kA. i) Determine the zero, positive, and negative sequence Thevenin equivalent impedances as seen at the fault point F. These should be evaluated in per unit and shown as a function of d.ii) Use the sequence impedances calculated in part (i) to determine the distance d of the fault (in km) from Bus 4.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,