College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Topic Video
Question
How much distance does it take to stop a car going 30 m/s (67 mph) if the brakes can apply a force equal to one half the car’s weight?
Expert Solution
arrow_forward
Step 1
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A person catches a ball with a mass of 145 g dropped from a height of 60.0 m above his glove. His hand stops the ball in 0.0100 s. What is the force exerted by his glove on the ball? Assume the ball slows down with constant acceleration.arrow_forward(a) Find the speed at which Superman (mass=90.0 kg) must fly into a train (mass = 17485 kg) traveling at 65.0 km/hr to stop it. Running into the train at that speed would severely damage both train and passengers. (b) Calculate the minimum time Superman must take to stop the train if the passengers experience an average horizontal force of 0.410 their own weight. (c) How far does the train then travel while being slowed to a stop?arrow_forwardThe standing vertical jump is a good test of an athlete’s strength and fitness. The athlete goes into a deep crouch, then extends his legs rapidly; when his legs are fully extended, he leaves the ground and rises to his highest height. It is the force of the ground on the athlete during the extension phase that accelerates the athlete to the final speed with which he leaves the ground. A good jumper can exert a force on the ground equal to twice his weight. If his crouch is 60 cm deep, how far off the ground does he rise?arrow_forward
- A car of mass 1650 kg, initially at a speed of 70km/h, crushes into a wall, if the accident lasted for 0.2 sec, what is the amount of force exerted in the car during the crash?arrow_forwardA constant force of 398 N acts on a spacecraft of mass 7830 kg that has an initial velocity of 32 m/s. How far has the spacecraft traveled when it reaches a velocity of 4930 m/s? marrow_forwardas a fish jump vertically out of the water, assume that only two significant forces act on it: an upward force F exerted by the tail fin and the downward force due to gravity. a force chinook salmon has a length of 1.50 m and a mass of 48.5 kg. if the fish is moving upward at 3.00 m/s as its head first breaks the surface and has an upward speed of 5.80 m/s after two-thirds of its length has left the surface, assume constant acceleration and determine the following. a. the salmon's acceleration b. the magnitude of the force F during this intervalarrow_forward
- A 2000kg truck starts at rest and reaches a speed of 15 m/s over a time period of 5s. What is the value of the force required to do this? Express answer in Newtons.arrow_forwardA freight train consists of two 8.00×104 kg5.60×104 kg engines and 45 cars with average masses of 5.50×104 kg5.50×104 kg. (a) What force must each engine exert backward on the track to accelerate the train at a rate of 4.00×10−2 m/s if the force of friction is 6.20×105 N, assuming the engines exert identical forces? This is not a large frictional force for such a massive system. Rolling friction for trains is small, and consequently trains are very energy-efficient transportation systems. (b) What is the force in the coupling between the 37th and 38th cars (this is the force each exerts on the other), assuming all cars have the same mass and that friction is evenly distributed among all of the cars and engines?arrow_forwardA shopper in a supermarket pushes a loaded cart with a horizontal force of 8 N. The cart has a mass of 26 kg. (a) How far will it move in 7.0 s, starting from rest? (Ignore friction.) m(b) How far will it move in 7.0 s if the shopper places his 30 N child in the cart before he begins to push it?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON