College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
How many joules of heat is required from the environment to warm up a 81kg human from the hypothermal state (35 C) back to normal temperature (37 C)
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Occasionally, huge icebergs are found floating on the ocean's currents. Suppose one such iceberg is 138 km long, 28.1 km wide, and 247 m thick. (a) How much heat in joules would be required to melt this iceberg (assumed to be at 0 °C) into liquid water at 0 °C? The density of ice is 917 kg/m³. (b) The annual energy consumption by the United States in 1994 was 9.3 x 10¹⁹ J. If this energy were delivered to the iceberg every year, how many years would it take before the ice melted? (a) Number (b) Number Units Unitsarrow_forwardSuppose you want to raise the temperature of a 0.185-kg piece of ice from -20.0°C to 130°C. The heat of fusion is Lf = 334 kJ/kg, and the heat of vaporization is Lv = 2256 kJ/kg. In this problem, take 1520 J/kg⋅°C as the specific heat of steam, and 2090 J/kg⋅°C as the specific heat of ice. Part (a) How much heat, in kilocalories, must be transferred for this to happen, including the energy needed for phase changes? Part (b) How much time, in seconds, is required to do this, assuming a constant 20.0 kJ/s rate of heat transfer?arrow_forward1. (a) The number of kilocalories in food is determined by calorimetry techniques in which the food is burned and the amount of heat transfer is measured. How many kilocalories per gram are there in a 6-g peanut if the energy from burning it is transferred to 0.5 kg of water held in a 0.1 -kg aluminum cup, causing a 55.9 °C temperature increase? The specific heat of water is 1.00 kcal/kg °C, and the specific heat of aluminum cup is 0.215 kcal/kg °C. Q kcal/g mp (b) Compare your answer to labeling information found on a package of peanuts and comment on whether the values are consistent. A label for unsalted dry roasted peanuts says that 30 g contains 185 calories (kcal). Find the (Q/m) from calorimetry techniques of the label on a box of roasted peanuts. Q EGE 4.86 m cal m labelarrow_forward
- The initial temperature of 60 g of ice is -200C. The specific heat capacity of ice is 0.5 cal/g.C0 and water’s is 1 cal/g.C0. The latent heat of fusion of water is 80 cal/g. How much heat is required to raise the ice to 00C and completely melt the ice? (b) How much additional heat is required to heat the water (obtained by melting the ice) to 620C?arrow_forwardSuppose you have 2.5kg of steam at 100 degrees celcius occupying 6.5 meters cubed at a pressure of 1.013 x 10^5 Pa. When the steam condenses to water at 100 degrees celcius it occupies a volume of 0.55 meters cubed. If the latent heat of vaporization of water is 2.26 x 10^6 J/kg, what was the change in the water's internal energy?arrow_forwardA thermos contains m1 = 0.96 kg of tea at T1 = 32° C. Ice (m2 = 0.095 kg, T2 = 0° C) is added to it. The heat capacity of both water and tea is c = 4186 J/(kg⋅K), and the latent heat of fusion for water is Lf = 33.5 × 104 J/kg. Part (a) Input an expression for the final temperature after the ice has melted and the system has reached thermal equilibrium. Part (b) What is the final temperature in Kelvin?arrow_forward
- 1. (a) How much heat transfer is necessary to raise the temperature of a 0.26 -kg piece of ice from -20 °C to 130 °C, including the 20 kJ/s energy needed for phase changes? Specific heat of ice = 2.090 kJ/kg °C Specific heat of water = 4.186 kJ/kg °C Specific heat of steam = 1.520 kJ/kg °C Heat of fusion of water = 334 kJ/kg Heat of vaporization = 2256 kJ/kg (i) Heat needed to warm ice to 0 °C: Q₁: ✔KJ (ii) Heat needed to melt ice at 0 °C: Q₂: KJ (iii) Heat required to warm 0 °C water to 100 °C: Q3: KJ (iv) Heat required to vaporize water at 100 °C: Q4: KJ (v) Heat required to warm 100 °C vapor to 130 °C: Q5: KJ Total heat, Q: KJ (b) How much time is required for the entire process, assuming a constant 20.0 kJ/s rate of heat transfer? Total time, t: Sarrow_forwardIce at 0 °C is placed in a Styrofoam cup containing 0.62 kg of lemonade at 32 °C. The specific heat capacity of lemonade is virtually the same as that of water; that is, c = 4180 J/(kg C°). After the ice and lemonade reach an equilibrium temperature, some ice still remains. The latent heat of fusion for water is Lf = 3.35 x 105 J/ kg. Assume that the mass of the cup is so small that it absorbs a negligible amount of heat, and ignore any heat lost to the surroundings. Determine the mass of ice that has melted, in grams.arrow_forwardWhat is the ratio of the energy required to warm 125 g of Ice (0.0 \deg C) to body temperature (37 \deg C) to warming the same amount of water through the same temperature change? Answer format is the number Eice/Ewater = (2 significant figures) Latent Heat of Fusion of Water: 335, 000 J/kg Specific Heat Capacity of Water: 4186 J/kg/\deg Carrow_forward
- In an insulated vessel, 239 g of ice at 0°C is added to 635 g of water at 15.0°C. (Assume the latent heat of fusion of the water is 3.33 x 10° J/kg and the specific heat is 4,186 J/kg · °C.) (a) What is the final temperature of the system? °C (b) How much ice remains when the system reaches equilibrium?arrow_forwardAn ice block of mass 1.2000000000000002 kg at an initial temperature of –11 ∘C is put into a copper pot of mass 2.5 kg containing 4.3 L of water at 21 ∘C. If you heat up the pot, what is the amount of energy (in J) you need to convert all the ice and the water into steam? (Assume that no energy is lost from the system.) You may need some or all of the following constants: The specific heat of ice is 2200 J/kg ∘C, the specific heat of copper is 386 J/kg ∘C and the specific heat of water is 4186 J/kg ∘C. The latent heat of fusion of ice is 334000 J/kg and the heat of vaporization for water is 2256000 J/kg .arrow_forwardIf her body retains 10 J of thermal energy for each joule of work done while lifting, how many times must she lift the barbell to warm her body 0.50∘C?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON