How do I get fxx, fyy, and fxy?

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
How do I get fxx, fyy, and fxy?
**Review: Find and classify CPs (Critical Points) of \( f(x, y) = e^{x^2 + y^2 - 2x} \)**

1. Compute the partial derivative with respect to \( x \):

   \[
   f_x = (2x - 2) e^{x^2 + y^2 - 2x}
   \]

   Setting \( f_x = 0 \), gives \( x = 1 \).
   
   *Note: \( e^{\text{any #}} > 0 \)*

2. Compute the partial derivative with respect to \( y \):

   \[
   f_y = (2y) e^{x^2 + y^2 - 2x}
   \]

   Setting \( f_y = 0 \), gives \( y = 0 \).

3. The critical point is \( CP = (1, 0) \).

4. Second partial derivatives:

   \[
   f_{xx} = 2e^{x^2 + y^2 - 2x} + (2x - 2)^2 e^{x^2 + y^2 - 2x}
   \]
   
   \[
   f_{yy} = 2e^{x^2 + y^2 - 2x} + 4y^2 e^{x^2 + y^2 - 2x}
   \]
   
   \[
   f_{xy} = 2y(2x - 2) e^{x^2 + y^2 - 2x}
   \]

5. Evaluate the Hessian determinant \( H \) at the critical point \( (1, 0) \):

   \[
   H(1, 0) = 2e^{-1}(2e^{-1}) - 0^2 > 0
   \]

   Additionally, check \( f_{xx}(1, 0) > 0 \):

   \[
   f_{xx}(1, 0) = 2e^{-1} > 0
   \]

6. Conclusion: Relative minimum at \( (1, 0) \).
Transcribed Image Text:**Review: Find and classify CPs (Critical Points) of \( f(x, y) = e^{x^2 + y^2 - 2x} \)** 1. Compute the partial derivative with respect to \( x \): \[ f_x = (2x - 2) e^{x^2 + y^2 - 2x} \] Setting \( f_x = 0 \), gives \( x = 1 \). *Note: \( e^{\text{any #}} > 0 \)* 2. Compute the partial derivative with respect to \( y \): \[ f_y = (2y) e^{x^2 + y^2 - 2x} \] Setting \( f_y = 0 \), gives \( y = 0 \). 3. The critical point is \( CP = (1, 0) \). 4. Second partial derivatives: \[ f_{xx} = 2e^{x^2 + y^2 - 2x} + (2x - 2)^2 e^{x^2 + y^2 - 2x} \] \[ f_{yy} = 2e^{x^2 + y^2 - 2x} + 4y^2 e^{x^2 + y^2 - 2x} \] \[ f_{xy} = 2y(2x - 2) e^{x^2 + y^2 - 2x} \] 5. Evaluate the Hessian determinant \( H \) at the critical point \( (1, 0) \): \[ H(1, 0) = 2e^{-1}(2e^{-1}) - 0^2 > 0 \] Additionally, check \( f_{xx}(1, 0) > 0 \): \[ f_{xx}(1, 0) = 2e^{-1} > 0 \] 6. Conclusion: Relative minimum at \( (1, 0) \).
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning