Introductory Circuit Analysis (13th Edition)
Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN: 9780133923605
Author: Robert L. Boylestad
Publisher: PEARSON
Bartleby Related Questions Icon

Related questions

bartleby

Concept explainers

Question

part F please

Problem 4: The circuit below is a common configuration that can be used to determine the value of a
resistor, Rx. This is usually achieved by prescribing values for the R1 and R2 resistors, and then using
an adjustable resistor (i.e., a “potentiometer") for R3. When the resistors are properly balanced, one
could connect a resistor across the bridge at the points indicated by arrows and no current would flow
across the resistor. Complete parts A - I.
R₁
M
V₂
R₂
W
M
R3
Part A: Using the passive sign convention, make reference marks on the circuit (current directions and
polarity symbols). Where needed, assign circuit variables to the elements. Indicate nodes (A,B,C, ...)
and a ground that you would use for nodal analysis. Indicate meshes that you would use for mesh
analysis.
Rx
Part B: Suppose you want to determine the voltages across R3 and Rx very quickly. Briefly explain how
this can be done by inspection (i.e., without formal analyses like nodal or mesh) by exploiting the
circuit structure and indicate which features allow you to do this. (i.e., the solution by inspection, not a
system of equations)
Part C: Using your method, write down the voltages across R3 and Rx in terms of the circuit resistances
and the battery voltage.
Part D: Suppose you wanted to balance the circuit, what potential difference must exist between the two
indicated points?
Part E: Using your previous answers, derive the value of Rx that balances the circuit in terms of the
remaining resistances.
Part F: Confirm your answer by deriving the value of Rx with node-voltage analysis (i.e. from scratch).
expand button
Transcribed Image Text:Problem 4: The circuit below is a common configuration that can be used to determine the value of a resistor, Rx. This is usually achieved by prescribing values for the R1 and R2 resistors, and then using an adjustable resistor (i.e., a “potentiometer") for R3. When the resistors are properly balanced, one could connect a resistor across the bridge at the points indicated by arrows and no current would flow across the resistor. Complete parts A - I. R₁ M V₂ R₂ W M R3 Part A: Using the passive sign convention, make reference marks on the circuit (current directions and polarity symbols). Where needed, assign circuit variables to the elements. Indicate nodes (A,B,C, ...) and a ground that you would use for nodal analysis. Indicate meshes that you would use for mesh analysis. Rx Part B: Suppose you want to determine the voltages across R3 and Rx very quickly. Briefly explain how this can be done by inspection (i.e., without formal analyses like nodal or mesh) by exploiting the circuit structure and indicate which features allow you to do this. (i.e., the solution by inspection, not a system of equations) Part C: Using your method, write down the voltages across R3 and Rx in terms of the circuit resistances and the battery voltage. Part D: Suppose you wanted to balance the circuit, what potential difference must exist between the two indicated points? Part E: Using your previous answers, derive the value of Rx that balances the circuit in terms of the remaining resistances. Part F: Confirm your answer by deriving the value of Rx with node-voltage analysis (i.e. from scratch).
Expert Solution
Check Mark
Knowledge Booster
Background pattern image
Electrical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Text book image
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Text book image
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Text book image
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Text book image
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Text book image
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,