MATLAB: An Introduction with Applications
6th Edition
ISBN: 9781119256830
Author: Amos Gilat
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
The owner of a movie theater company used multiple regression analysis to predict gross revenue
(y) as a function of television advertising (x1) and newspaper advertising (x2).
The estimated regression equation wasŷ = 82.9 + 2.27x1 + 1.50x2.
The computer solution, based on a sample of eight weeks, provided SST = 25.7 and SSR = 23.435.
(a)Compute and interpret R2 and Ra2.
(Round your answers to three decimal places.)
(b) The proportion of the variability in the dependent variable that can be explained by the estimated multiple regression equation is________ . Adjusting for the number of independent variables in the model, the proportion of the variability in the dependent variable that can be explained by the estimated multiple regression equation is .
(c) When television advertising was the only independent variable,
R2 = 0.653 and Ra2 = 0.595.
Do you prefer the multiple regression results? Explain.Multiple regression analysis (select IS or IS NOT) preferred since both R2 and Ra2 show (Select Increase OR decreased) percentage of the variability of y explained when both independent variables are used.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 4 steps with 4 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.Similar questions
- The table shows the number of goals allowed and the total points earned (2 points for a win, and 1 point for an overtime or shootout loss) by 14 ice hockey teams over the course of a season. The equation of the regression line is y=−0.532x+211.813. Use the data to answer the following questions. (a) Find the coefficient of determination, r2, and interpret the result. (b) Find the standard error of the estimate, se, and interpret the result Goals Allowed, x Points, y215 112210 104217 103219 96259 85267 77281 51201 102214 99206 103216 94200 89263 70243 72arrow_forwardData from 147 colleges from 1995 to 2005 (Lee,2008) were tested to predict the endowments (in billions) to a college from the average SAT score of students attending the college. The resulting regression equation was Y = -20.46 + 4.06 (X). This regression indicates that: a. for every one-point increase in SAT scores, a college can expect 4.06 billion more in endowments. b. most colleges have very high endowments. c. for every one-point increase in SAT scores, a college can expect 20.46 billion fewer in endowments. d. for every one-dollar increase in endowments, the college can expect a half-point increase in SAT scores.arrow_forwardA researcher is interested in finding out the factors which determined the yearly spending on family outings last year (Y, measured in dollars). She compiles data on the number of members in a family (X1), the annual income of the family (X2), and the number of times the family went out on an outing in the last year (X3). She collects data from 196 families and estimates the following regression: Y=120.45+1.54X1+2.12X2+2.12X3. Suppose β1, β2, β3, denote the population slope coefficients of X1, X2, and X3, respectively. The researcher wants to check if neither X1 nor X2 have a significant effect on Y or at least one of them has a significant effect, keeping X3 constant. She calculates the value of the F-statistic for the test with the two restrictions (H0: β1=0, β2=0 vs. H1: β1≠0 and/or β2≠0) to be 3.00. The p-value for the test will be enter your response here?arrow_forward
- The owner of a movie theater company used multiple regression analysis to predict gross revenue (y) as a function of television advertising (x,) and newspaper advertising (x,). The estimated regression equation was ý = 82.3 + 2.29x, + 1.90x2. The computer solution, based on a sample of eight weeks, provided SST = 25.1 and SSR = 23.415. (a) Compute and interpret R? and R 2. (Round your answers to three decimal places.) The proportion of the variability in the dependent variable that can be explained by the estimated multiple regression equation is 653 x . Adjusting for the number of independent variables in the model, the proportion of the variability in the dependent variable that can be explained by the estimated multiple regression equation is (b) When television advertising was the only independent variable, R2 = 0.653 and R,2 = 0.595. Do you prefer the multiple regression results? Explain. Multiple regression analysis (is preferred since both R2 and R.2 show an increased v v…arrow_forwardThe accompanying table shows results from regressions performed on data from a random sample of 21 cars. The response (y) variable is CITY (fuel consumption in mi/gal). The predictor (x) variables are WT (weight in pounds), DISP (engine displacement in liters), and HWY (highway fuel consumption in mi/gal). The equation CITY - 3.17 +0.823HWY was previously determined to be the best for predicting city fuel consumption. A car weighs 2700 lb, it has an engine displacement of 1.6 L, and its highway fuel consumption is 35 mi/gal. What is the best predicted value of the city fuel consumption? Is that predicted value likely to be a good estimate? Is that predicted value likely to be very accurate? Click the icon to view the table of regression equations. The best predicted value of the city fuel consumption is (Type an integer or a decimal. Do not round.). Regression Table I R² Adjusted R2 WT/DISP WT/HWY Predictor (x) Variables P-Value WT/DISP/HWY 0.000 0.942 0.000 0.748 0.000 0.942 0.000…arrow_forwardA real estate analyst has developed a multiple regression line, y = 60 + 0.068 x1 – 2.5 x2, to predict y = the market price of a home (in $1,000s), using two independent variables, x1 = the total number of square feet of living space, and x2 = the age of the house in years. With this regression model, the predicted price of a 10-year old home with 2,500 square feet of living area is __________. $205.00 $200,000.00 $205,000.00 $255,000.00arrow_forward
- The City of Bellmore’s police chief believes that maintenance costs on high-mileage police vehicles are much higher than those costs for low-mileage vehicles. If high-mileage vehicles are costing too much, it may be more economical to purchase more vehicles. An analyst in the department regresses yearly maintenance costs (Y) for a sample of 200 police vehicles on each vehicle’s total mileage for the year (X). The regression equation finds: Y = $50 + .030X with a r2 of .90 What is the IV? What is the DV? If the mileage increases by one mile, what is the predicted increase in maintenance costs? If a vehicle’s mileage for the year is 50,000, what is its predicted maintenance costs? What does an r2 of .90 tell us? Is this a strong or weak correlation? How can you tell?arrow_forwardThe table shows the number of goals allowed and the total points earned (2 points for a win, and 1 point for an overtime or shootout loss) by 14 ice hockey teams over the course of a season. The equation of the regression line is y= - 0.558x + 216.186. Use the data to answer the following questions. (a) Find the coefficient of determination, r, and interpret the result. (b) Find the standard error of the estimate, s,, and interpret the result. Goals Allowed, x Points, y 218 212 216 220 257 266 274 200 211 206 216 204 264 244 O 111 106 99 90 86 83 45 105 100 101 94 83 67 68 (a) ? =O (Round to three decimal places as needed.)arrow_forwardThe police chief believes that maintenance costs on high-mileage police vehicles are much higher than those costs for low-mileage vehicles. If high-mileage vehicles are costing too much, it may be more economical to purchase more vehicles. An analyst in the department regresses yearly maintenance costs (Y) for a sample of 200 police vehicles on each vehicle’s total mileage for the year (X). The regression equation finds: Y = $50 + .030X with a r2 of .90 If a vehicle’s mileage for the year is 50,000, what is its predicted maintenance costs? What does an r2 of .90 tell us? Is this a strong or weak correlation? How can you tell?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman
MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc
Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning
Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning
Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON
The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman
Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman