
College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
The fundamental frequency of a vibrating system is 381 Hz. For each of the following systems, give the lowest frequency (excluding the fundamental) at which standing waves can occur: (a) a cylindrical pipe with both ends open and (b) a cylindrical pipe with only one end open.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The G string on a guitar is a 0.46 mm diameter steel string with a linear density of 1.3 g/m. When the string is properly tuned to 196 Hz, the wave speed of the string is 250 m/s. Tuning is done by slowly tightening the string, and stretching it in the process. By how many mm does a 75 cm-long G string stretch when it is first tuned? [Hint: Look up relevant properties of steel as needed.]arrow_forwardPlease asaparrow_forwardA 9.50-m long string has a mass of 0.0850 kg. If this string is pulled to a tension of 80.0 N and tied between two fixed supports, determine the following. (a) the mass per unit length of the string kg/m (b) the speed of the waves on the string m/s (c) the fundamental frequency for vibrations Hz (d) the frequency of the second harmonic Hzarrow_forward
- A A-string on a particular guitar has a circular cross-section with a diameter of 0.914 mm. The vibrating length of the string is 65.0 cm. (1) If the density of the string is 7,600 kg/m3, find the mass per unit length of the string. (2) For the string to be in tune, it should have a natural frequency of 110.00 Hz. Find the tension in the string that produces this natural frequency. (3) Assuming that the guitar string is in tune, find the frequency and wavelength of the 5th harmonic.arrow_forwardSuppose the strings on a violin are stretched with the same tension and each has the same length between its two fixed ends. The musical notes and corresponding fundamental frequencies of two of these strings are G (196.0 Hz) and E (659.3 Hz). The linear density of the E string is 7.74 x 10-4 kg/m. What is the linear density of the G string?arrow_forwardA guitar string has an overall length of 2.0 m and a total mass of 35.2 g before it is strung on a guitar. Once on the guitar, however, there is a distance of 85 cm between its fixed end points. It is tightened to a tension of 345 N. (a) What is wave speed for waves on the tightened string? (b) What are the wavelength and frequency of the traveling waves that interfere to form the fundamental and second harmonic standing waves on the string? Sketch standing wave patterns of both harmonic in this string.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON