gr 13. r 2 sin 0 = of ec

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
82
32
r = a cose
14. r = 3 cos 0
............In General
a>0
a
Equations Relating Polar and Cartesian Coordinates
x = r cos 0, y = r sin 0,
p² = x² + y²,
+
T
16. r = -cos 0
82
+ +
a
BIN
tan 0
=
Sketch the graph of each polar equation. Also, convert each into a rectangular coordinate equation.
13. r 2 sin 0
15. r = -sin 0
17. r cos=-4
r = asin 0
32
a>0
+
Transcribed Image Text:82 32 r = a cose 14. r = 3 cos 0 ............In General a>0 a Equations Relating Polar and Cartesian Coordinates x = r cos 0, y = r sin 0, p² = x² + y², + T 16. r = -cos 0 82 + + a BIN tan 0 = Sketch the graph of each polar equation. Also, convert each into a rectangular coordinate equation. 13. r 2 sin 0 15. r = -sin 0 17. r cos=-4 r = asin 0 32 a>0 +
4) Find the Cartesian coordinates of the following points (giver
polar coordinates).
a. (√2, π/4)
c. (0, π/2)
5) Graph the polar equations.
a) r = 2
b. (1,0)
d. (-√2, π/4)
b) = π/3, -1≤r≤ 3
6) Change the polar equation into rectangular form and describe the graph.
a) r cos 0 = 2
b) rcos + r sin 0 = 1
7) Change the rectangular form into a polar equation
a) x² + y² = 4
2²
ô
+
4
e. (-3,5π/6)
g. (-1,7m)
= 1
f. (5,tan-¹(4/3))
h. (2√3, 2π/3)
c) r² = 1
Transcribed Image Text:4) Find the Cartesian coordinates of the following points (giver polar coordinates). a. (√2, π/4) c. (0, π/2) 5) Graph the polar equations. a) r = 2 b. (1,0) d. (-√2, π/4) b) = π/3, -1≤r≤ 3 6) Change the polar equation into rectangular form and describe the graph. a) r cos 0 = 2 b) rcos + r sin 0 = 1 7) Change the rectangular form into a polar equation a) x² + y² = 4 2² ô + 4 e. (-3,5π/6) g. (-1,7m) = 1 f. (5,tan-¹(4/3)) h. (2√3, 2π/3) c) r² = 1
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,