Given xc(t) = sin(40nt) + cos(80nt) a) Determine the CTFT of xe (t). b) x (t) is sampled with T, = 1/50 second. What is x[n]? c) Plot X (e) = DTFT (x[n])

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
### Given
\[ x_c(t) = \sin(40\pi t) + \cos(80\pi t) \]

### Questions

#### a) Determine the CTFT of \( x_c(t) \).

#### b) \( x_c(t) \) is sampled with \( T_s = 1/50 \) second. What is \( x[n] \)?

#### c) Plot \( X(e^{j\omega}) = DTFT\{x[n]\} \).

---

### Solution:

#### a) Continuous-Time Fourier Transform (CTFT) of \( x_c(t) \)

To determine the CTFT of \( x_c(t) = \sin(40\pi t) + \cos(80\pi t) \), we use the known Fourier Transform pairs:

1. For \( \sin(40\pi t) \):
   \[
   \sin(40\pi t) \Rightarrow \frac{1}{2j} \left[ \delta(f - 20) - \delta(f + 20) \right]
   \]

2. For \( \cos(80\pi t) \):
   \[
   \cos(80\pi t) \Rightarrow \frac{1}{2} \left[ \delta(f - 40) + \delta(f + 40) \right]
   \]

Thus, the CTFT of \( x_c(t) \) is:
\[
X_c(f) = \frac{1}{2j} \left[ \delta(f - 20) - \delta(f + 20) \right] + \frac{1}{2} \left[ \delta(f - 40) + \delta(f + 40) \right]
\]

#### b) Sampling \( x_c(t) \) with \( T_s = 1/50 \) second

Using the sampling period \( T_s = 1/50 \) second, we can express the sampled signal \( x[n] \) as:
\[
x[n] = x_c(nT_s) = \sin(40\pi (n/50)) + \cos(80\pi (n/50))
\]

Simplify the arguments:
\[
x[n] = \sin\left(\frac{40\pi n}{50}\right) + \cos\left(\frac{80\pi n}{50
Transcribed Image Text:### Given \[ x_c(t) = \sin(40\pi t) + \cos(80\pi t) \] ### Questions #### a) Determine the CTFT of \( x_c(t) \). #### b) \( x_c(t) \) is sampled with \( T_s = 1/50 \) second. What is \( x[n] \)? #### c) Plot \( X(e^{j\omega}) = DTFT\{x[n]\} \). --- ### Solution: #### a) Continuous-Time Fourier Transform (CTFT) of \( x_c(t) \) To determine the CTFT of \( x_c(t) = \sin(40\pi t) + \cos(80\pi t) \), we use the known Fourier Transform pairs: 1. For \( \sin(40\pi t) \): \[ \sin(40\pi t) \Rightarrow \frac{1}{2j} \left[ \delta(f - 20) - \delta(f + 20) \right] \] 2. For \( \cos(80\pi t) \): \[ \cos(80\pi t) \Rightarrow \frac{1}{2} \left[ \delta(f - 40) + \delta(f + 40) \right] \] Thus, the CTFT of \( x_c(t) \) is: \[ X_c(f) = \frac{1}{2j} \left[ \delta(f - 20) - \delta(f + 20) \right] + \frac{1}{2} \left[ \delta(f - 40) + \delta(f + 40) \right] \] #### b) Sampling \( x_c(t) \) with \( T_s = 1/50 \) second Using the sampling period \( T_s = 1/50 \) second, we can express the sampled signal \( x[n] \) as: \[ x[n] = x_c(nT_s) = \sin(40\pi (n/50)) + \cos(80\pi (n/50)) \] Simplify the arguments: \[ x[n] = \sin\left(\frac{40\pi n}{50}\right) + \cos\left(\frac{80\pi n}{50
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,