Given the vector function r(t) = (t, et, 10), find the tangential component of acceleration aT when t = 7.

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
### Problem Statement

Given the vector function \(\vec{r}(t) = \langle t, e^t, 10 \rangle\), find the tangential component of acceleration \(a_T\) when \(t = 7\).

---

### Solution

To find the tangential component of acceleration \(a_T\), we follow these steps:

1. **Compute the velocity vector \(\vec{v}(t)\):**
   \[
   \vec{v}(t) = \frac{d\vec{r}}{dt} = \left\langle \frac{d}{dt}(t), \frac{d}{dt}(e^t), \frac{d}{dt}(10) \right\rangle = \langle 1, e^t, 0 \rangle
   \]

2. **Compute the acceleration vector \(\vec{a}(t)\):**
   \[
   \vec{a}(t) = \frac{d\vec{v}}{dt} = \left\langle \frac{d}{dt}(1), \frac{d}{dt}(e^t), \frac{d}{dt}(0) \right\rangle = \langle 0, e^t, 0 \rangle
   \]

3. **Find the magnitude of the velocity vector \(|\vec{v}(t)|\):**
   \[
   |\vec{v}(t)| = \sqrt{ (1)^2 + (e^t)^2 + (0)^2 } = \sqrt{1 + e^{2t}}
   \]

4. **Calculate the tangential component of acceleration \(a_T\):**
   \[
   a_T = \frac{\vec{v}(t) \cdot \vec{a}(t)}{|\vec{v}(t)|}
   \]

   Here, \(\vec{v}(t) \cdot \vec{a}(t)\) is the dot product of the velocity and acceleration vectors:
   \[
   \vec{v}(t) \cdot \vec{a}(t) = \langle 1, e^t, 0 \rangle \cdot \langle 0, e^t, 0 \rangle = 1 \cdot 0 + e^t \cdot
Transcribed Image Text:### Problem Statement Given the vector function \(\vec{r}(t) = \langle t, e^t, 10 \rangle\), find the tangential component of acceleration \(a_T\) when \(t = 7\). --- ### Solution To find the tangential component of acceleration \(a_T\), we follow these steps: 1. **Compute the velocity vector \(\vec{v}(t)\):** \[ \vec{v}(t) = \frac{d\vec{r}}{dt} = \left\langle \frac{d}{dt}(t), \frac{d}{dt}(e^t), \frac{d}{dt}(10) \right\rangle = \langle 1, e^t, 0 \rangle \] 2. **Compute the acceleration vector \(\vec{a}(t)\):** \[ \vec{a}(t) = \frac{d\vec{v}}{dt} = \left\langle \frac{d}{dt}(1), \frac{d}{dt}(e^t), \frac{d}{dt}(0) \right\rangle = \langle 0, e^t, 0 \rangle \] 3. **Find the magnitude of the velocity vector \(|\vec{v}(t)|\):** \[ |\vec{v}(t)| = \sqrt{ (1)^2 + (e^t)^2 + (0)^2 } = \sqrt{1 + e^{2t}} \] 4. **Calculate the tangential component of acceleration \(a_T\):** \[ a_T = \frac{\vec{v}(t) \cdot \vec{a}(t)}{|\vec{v}(t)|} \] Here, \(\vec{v}(t) \cdot \vec{a}(t)\) is the dot product of the velocity and acceleration vectors: \[ \vec{v}(t) \cdot \vec{a}(t) = \langle 1, e^t, 0 \rangle \cdot \langle 0, e^t, 0 \rangle = 1 \cdot 0 + e^t \cdot
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question

Could you please write in integer or decimal.

Solution
Bartleby Expert
SEE SOLUTION
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning