Given the third-order linear homogeneous differential equation: y (3)-y=0 Select all correct answers Hide answer choices Three linearly independent solutions of the given differential equation are: e², e-*/2.xe-x/2 Three linearly independent solutions of the given differential equation are: √√3 2 Ⓡee/2 sin (- (5). √3 2 x), e ¹/2 co cos ( -x) If y (0)=0, y '(0) = 1, y ''(0) = -1 then y=(-2) e (-1/2) sin (√3 x + x) 2

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

I think there is one more 

**C**

Then \( y = \left(\frac{-2}{\sqrt{3}}\right) e^{-x/2} \sin\left(\frac{\sqrt{3}}{2} x + \pi\right) \)  
is a solution of the associated initial value problem.

Three linearly independent solutions of the given differential equation are:

**D**

\( e^x, \, e^{-x/2} \sin\left(\frac{\sqrt{3}}{2} x\right), \, e^{-x/2} \cos\left(\frac{\sqrt{3}}{2} x\right) \)

**E**

\( y \equiv 0 \) is a solution of the given differential equation:  
\( y^{(3)} - y = 0 \)

If \( y(0) = 0, \, y'(0) = 1, \, y''(0) = -1 \)

**F**

Then \( y = \left(\frac{2}{\sqrt{3}}\right) e^{-x/2} \sin\left(\frac{\sqrt{3}}{2} x\right) \)  
is a solution of the associated initial value problem.
Transcribed Image Text:**C** Then \( y = \left(\frac{-2}{\sqrt{3}}\right) e^{-x/2} \sin\left(\frac{\sqrt{3}}{2} x + \pi\right) \) is a solution of the associated initial value problem. Three linearly independent solutions of the given differential equation are: **D** \( e^x, \, e^{-x/2} \sin\left(\frac{\sqrt{3}}{2} x\right), \, e^{-x/2} \cos\left(\frac{\sqrt{3}}{2} x\right) \) **E** \( y \equiv 0 \) is a solution of the given differential equation: \( y^{(3)} - y = 0 \) If \( y(0) = 0, \, y'(0) = 1, \, y''(0) = -1 \) **F** Then \( y = \left(\frac{2}{\sqrt{3}}\right) e^{-x/2} \sin\left(\frac{\sqrt{3}}{2} x\right) \) is a solution of the associated initial value problem.
Given the third-order linear homogeneous differential equation:

\[ y^{(3)} - y = 0 \]

**Select all correct answers**

Three linearly independent solutions of the given differential equation are:

**A**
\[ e^x, \, e^{-x/2}, \, x \, e^{-x/2} \]

Three linearly independent solutions of the given differential equation are:

**B**
\[ e^x, \, e^{x/2} \sin\left(\frac{\sqrt{3}}{2}x\right), \, e^{x/2} \cos\left(\frac{\sqrt{3}}{2}x\right) \]

\[ \text{If } y(0) = 0, \, y'(0) = 1, \, y''(0) = -1 \]

**C**
\[ \text{then } y = \left(\frac{-2}{\sqrt{3}}\right) e^{-x/2} \sin\left(\frac{\sqrt{3}}{2}x + \pi\right) \]
Transcribed Image Text:Given the third-order linear homogeneous differential equation: \[ y^{(3)} - y = 0 \] **Select all correct answers** Three linearly independent solutions of the given differential equation are: **A** \[ e^x, \, e^{-x/2}, \, x \, e^{-x/2} \] Three linearly independent solutions of the given differential equation are: **B** \[ e^x, \, e^{x/2} \sin\left(\frac{\sqrt{3}}{2}x\right), \, e^{x/2} \cos\left(\frac{\sqrt{3}}{2}x\right) \] \[ \text{If } y(0) = 0, \, y'(0) = 1, \, y''(0) = -1 \] **C** \[ \text{then } y = \left(\frac{-2}{\sqrt{3}}\right) e^{-x/2} \sin\left(\frac{\sqrt{3}}{2}x + \pi\right) \]
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 7 steps with 3 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,