f(t) = ekt [cosh(2kt) – H(t – a)(t – b)] %3D

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Consider the following function: 

What is the Laplace transform of the given function?

 

Select one:

f(t) = ekt [cosh(2kt) – H(t – a)(t – b)]
%3D
Transcribed Image Text:f(t) = ekt [cosh(2kt) – H(t – a)(t – b)] %3D
s + k
ea(s-k)
а — b
a.
(s + k)² – 4k²
(8 + k)² [ (s+k)²
(s + k)²]
2
8 – k
ea(k–s)
ea(k-s) (a – b)
b.
(8 – k)² – 4k2
(s – k)?
(8 – k)
8 - k
(8 – k)² – 4k²
a – b
(s – k)
1
С.
e a(k-s)
(8 – k)²
e a(kts)
(s + k)2
e a(k+s) (a – b)
(s + k)?
8 + k
d.
|
(s + k)² – 4k²
Transcribed Image Text:s + k ea(s-k) а — b a. (s + k)² – 4k² (8 + k)² [ (s+k)² (s + k)²] 2 8 – k ea(k–s) ea(k-s) (a – b) b. (8 – k)² – 4k2 (s – k)? (8 – k) 8 - k (8 – k)² – 4k² a – b (s – k) 1 С. e a(k-s) (8 – k)² e a(kts) (s + k)2 e a(k+s) (a – b) (s + k)? 8 + k d. | (s + k)² – 4k²
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Laplace Transformation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,