from The Early History of the Airplaneby Orville and Wilbur Wright      For two reasons we decided to use two propellers. In the first place we could, by the use of two propellers, secure a reaction against a greater quantity of air, and at the same time use a larger pitch angle than was possible with one propeller; and in the second place by having the propellers turn in opposite directions, the gyroscopic action of one would neutralize that of the other. The method we adopted of driving the propellers in opposite directions by means of chains is now too well known to need description here. We decided to place the motor to one side of the man, so that in case of a plunge headfirst, the motor could not fall upon him. In our gliding experiments we had had a number of experiences in which we had landed upon one wing, but the crushing of the wing had absorbed the shock, so that we were not uneasy about the motor in case of a landing of that kind. To provide against the machine rolling over forward in landing, we designed skids like sled runners, extending out in front of the main surfaces. Otherwise the general construction and operation of the machine was to be similar to that of the 1902 glider.     In order to show the general reader the way in which the machine operates, let us fancy ourselves ready for the start. The machine is placed upon a single-rail track facing the wind, and is securely fastened with a cable. The engine is put in motion, and the propellers in the rear whir. You take your seat at the center of the machine beside the operator. He slips the cable, and you shoot forward. An assistant who has been holding the machine in balance on the rail starts forward with you, but before you have gone 50 feet the speed is too great for him, and he lets go. Before reaching the end of the track the operator moves the front rudder, and the machine lifts from the rail like a kite supported by the pressure of the air underneath it. The ground under you is first a perfect blur, but as you rise the objects become clearer. At a height of 100 feet you feel hardly any motion at all, except for the wind which strikes your face. If you did not take the precaution to fasten your hat before starting, you have probably lost it by this time. The operator moves a lever: the right wing rises, and the machine swings about to the left. You make a very short turn, yet you do not feel the sensation of being thrown from your seat, so often experienced in automobile and railway travel. You find yourself facing toward the point from which you started. The objects on the ground now seem to be moving at much higher speed, though you perceive no change in the pressure of the wind on your face. You know then that you are traveling with the wind. When you near the starting-point the operator stops the motor while still high in the air. The machine coasts down at an oblique angle to the ground, and after sliding 50 or 100 feet, comes to rest. Although the machine often lands when traveling at a speed of a mile a minute, you feel no shock whatever, and cannot, in fact, tell the exact moment at which it first touched the ground. The motor close beside you kept up an almost deafening roar during the whole flight, yet in your excitement you did not notice it till it stopped! 6   Drag each label to the correct location on the image. Which label provides the best evidence for each of the statements about the passage?   An assistant who has been holding the machinein balance on the rail starts forwards with you   The machine is placed upon a single-railtrack facing the wind   you perceive no change in the pressure of thewind on your face   you do not feel the sensation of beingthrown from your seat             Reset Next © 2024 Edmentum. All rights reserved.

Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
icon
Related questions
Question

from The Early History of the Airplane
by Orville and Wilbur Wright

     For two reasons we decided to use two propellers. In the first place we could, by the use of two propellers, secure a reaction against a greater quantity of air, and at the same time use a larger pitch angle than was possible with one propeller; and in the second place by having the propellers turn in opposite directions, the gyroscopic action of one would neutralize that of the other. The method we adopted of driving the propellers in opposite directions by means of chains is now too well known to need description here. We decided to place the motor to one side of the man, so that in case of a plunge headfirst, the motor could not fall upon him. In our gliding experiments we had had a number of experiences in which we had landed upon one wing, but the crushing of the wing had absorbed the shock, so that we were not uneasy about the motor in case of a landing of that kind. To provide against the machine rolling over forward in landing, we designed skids like sled runners, extending out in front of the main surfaces. Otherwise the general construction and operation of the machine was to be similar to that of the 1902 glider.
     In order to show the general reader the way in which the machine operates, let us fancy ourselves ready for the start. The machine is placed upon a single-rail track facing the wind, and is securely fastened with a cable. The engine is put in motion, and the propellers in the rear whir. You take your seat at the center of the machine beside the operator. He slips the cable, and you shoot forward. An assistant who has been holding the machine in balance on the rail starts forward with you, but before you have gone 50 feet the speed is too great for him, and he lets go. Before reaching the end of the track the operator moves the front rudder, and the machine lifts from the rail like a kite supported by the pressure of the air underneath it. The ground under you is first a perfect blur, but as you rise the objects become clearer. At a height of 100 feet you feel hardly any motion at all, except for the wind which strikes your face. If you did not take the precaution to fasten your hat before starting, you have probably lost it by this time. The operator moves a lever: the right wing rises, and the machine swings about to the left. You make a very short turn, yet you do not feel the sensation of being thrown from your seat, so often experienced in automobile and railway travel. You find yourself facing toward the point from which you started. The objects on the ground now seem to be moving at much higher speed, though you perceive no change in the pressure of the wind on your face. You know then that you are traveling with the wind. When you near the starting-point the operator stops the motor while still high in the air. The machine coasts down at an oblique angle to the ground, and after sliding 50 or 100 feet, comes to rest. Although the machine often lands when traveling at a speed of a mile a minute, you feel no shock whatever, and cannot, in fact, tell the exact moment at which it first touched the ground. The motor close beside you kept up an almost deafening roar during the whole flight, yet in your excitement you did not notice it till it stopped!

6
 
Drag each label to the correct location on the image.

Which label provides the best evidence for each of the statements about the passage?

 
  • An assistant who has been holding the machine
    in balance on the rail starts forwards with you
     
  • The machine is placed upon a single-rail
    track facing the wind
     
  • you perceive no change in the pressure of the
    wind on your face
     
  • you do not feel the sensation of being
    thrown from your seat
     
 
 
 
 
 
Reset Next
© 2024 Edmentum. All rights reserved.
AI-Generated Solution
AI-generated content may present inaccurate or offensive content that does not represent bartleby’s views.
steps

Unlock instant AI solutions

Tap the button
to generate a solution

Similar questions
Recommended textbooks for you
Algebra and Trigonometry (6th Edition)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
Contemporary Abstract Algebra
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra And Trigonometry (11th Edition)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
Introduction to Linear Algebra, Fifth Edition
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
College Algebra (Collegiate Math)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education