For the matrix N = 9 22 4 3 7 1, find three different non-zero vectors that are in the null space of N. 4 11 3

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Refer to image below to find three different vectors

For the matrix \( N = \begin{bmatrix} 9 & 22 & 4 \\ 3 & 7 & 1 \\ 4 & 11 & 3 \end{bmatrix} \), find three different non-zero vectors that are in the null space of \( N \).

**Answer:**

\[ \begin{bmatrix} \phantom{0} \\ \phantom{0} \\ \phantom{0} \end{bmatrix} \]

**Answer:**

\[ \begin{bmatrix} \phantom{0} \\ \phantom{0} \\ \phantom{0} \end{bmatrix} \]

**Answer:**

\[ \begin{bmatrix} \phantom{0} \\ \phantom{0} \\ \phantom{0} \end{bmatrix} \]
Transcribed Image Text:For the matrix \( N = \begin{bmatrix} 9 & 22 & 4 \\ 3 & 7 & 1 \\ 4 & 11 & 3 \end{bmatrix} \), find three different non-zero vectors that are in the null space of \( N \). **Answer:** \[ \begin{bmatrix} \phantom{0} \\ \phantom{0} \\ \phantom{0} \end{bmatrix} \] **Answer:** \[ \begin{bmatrix} \phantom{0} \\ \phantom{0} \\ \phantom{0} \end{bmatrix} \] **Answer:** \[ \begin{bmatrix} \phantom{0} \\ \phantom{0} \\ \phantom{0} \end{bmatrix} \]
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 5 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,