Chemistry
10th Edition
ISBN: 9781305957404
Author: Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
thumb_up100%
For the exothermic reaction
PCl3(g)+Cl2(g)⇌PCl5(g)
Kp= 0.200 at a certain temperature.
A flask is charged with 0.500 atm PCl3, 0.500 atm Cl2, and 0.300 atm PCl5 at this temperature.
What are the equilibrium partial pressures of PCl3, Cl2, and PCl5, respectively?
Express your answers numerically in atmospheres with three digits
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 3 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- For the reaction: 2 A (g) + B (s) ⇌ 2 C (s) + D (g) At 298 K in a 10.0 L vessel, the equilibrium values are as follows: 0.721 atm of A, 4.18 mol of B, 6.25 mol of C, and 2.54 atm of D. What is the value of the equilibrium constant?arrow_forwardAn equilibrium is established for the reaction 2 CO(g) + MoO₂(s) ⇌ 2 CO₂(g) + Mo(s). Use the expression for Kp from part a. If at equilibrium the partial pressure of carbon monoxide is 5.21 atm and the partial pressure of the carbon dioxide is 0.753 atm, then what is the value of Kp?arrow_forwardAt high temperatures, bromine molecules can dissociate into bromine atoms. For the reaction Br₂(g) ⇌ 2 Br・(g) Kp = 2.48 × 10⁻³ at 1650 °C. A 5.00 L vessel at 1650 °C is filled with Br₂(g) at an initial pressure of 6.50 atm and allowed to come to equilibrium. What will be the pressure (in atm) of Br・(g) at equilibrium?arrow_forward
- Consider the equilibrium reaction:2 SO2 (g) + O2(g) ⇌ 2SO3(g)In a particular experiment a student added 0.0870 moles of SO2 and 0.0780 moles of O2 to a 0.750-L container. At equilibrium, the equilibrium concentration of O2 was 0.065 molar. What is the value of the equilibrium constant K?arrow_forwardAs shown in Table 15.2 in the textbook, KpKp for the equilibriumN2(g)+3H2(g)⇌2NH3(g)N2(g)+3H2(g)⇌2NH3(g)is 4.51×10−54.51×10−5 at 450 ∘C∘C. For each of the mixtures listed here, indicate whether the mixture is at equilibrium at 450 ∘C∘C. If it is not at equilibrium, indicate the direction (toward product or toward reactants) in which the mixture must shift to achieve equilibrium. A. 98 atmatm NH3NH3, 45 atmatm N2N2, 55 atmatm H2H2 98 , 45 , 55 a. yes, mixture is at equilibrium b. no, mixture must shift toward products to achieve equilibrium c. no, mixture must shift toward reactants to achieve equilibrium B.57 atmatm NH3NH3, 143 atmatm N2N2, no H2H2 57 , 143 , no a.yes, mixture is at equilibrium b.no, mixture must shift toward products to achieve equilibrium c.no, mixture must shift toward reactants to achieve equilibriumarrow_forwardWater gas is a 1:1 mixture of carbon monoxide and hydrogen gas and is called water gas because it is formed from steam and hot carbon in the following reaction: H2 O(g) + C(s) ⇌ H2(g) + CO(g). Methanol, a liquid fuel that could possibly replace gasoline, can be prepared from water gas and hydrogen at high temperature and pressure in the presence of a suitable catalyst.(a) Write the expression for the equilibrium constant (Kc) for the reversible reaction2H2(g) + CO(g) ⇌ CH3 OH(g) ΔH = −90.2 kJ(b) What will happen to the concentrations of H2, CO, and CH3OH at equilibrium if more H2 is added?(c) What will happen to the concentrations of H2, CO, and CH3OH at equilibrium if CO is removed?(d) What will happen to the concentrations of H2, CO, and CH3OH at equilibrium if CH3OH is added?(e) What will happen to the concentrations of H2, CO, and CH3OH at equilibrium if the temperature of the system is increased?(f) What will happen to the concentrations of H2, CO,…arrow_forward
- For the reaction PCl₅(g) ⇌ PCl₃(g) + Cl₂(g) Kp = 1.45 × 10⁻⁴ at 160 °C. A 1.00 L vessel at 160 °C is filled with PCl₅(g) at an initial pressure of 3.75 atm and allowed to come to equilibrium. What will be the pressure (in atm) of Cl₂(g) at equilibrium?arrow_forwardA chem ngineer is studying the following reaction: 4 HCl(g)+O,(g) – 2 H,0(g)+2Cl,(g) At the temperature the engineer picks, the equilibrium constant K, for this reaction is 0.0040. The engineer charges ("fillsf) four reaction vessels with hydrogen chloride and oxygen, and lets the reaction begin. He then measures the co mixture inside each vessel from time to time. His first set of measurements are shown in the table below. Predict the changes in the compositions the engineer should expect next time he measures the compositions. reaction compound pressure expected change in pressure vessel HCl 8.71 atm Ot increase O! decrease O (no change) 02 8.13 atm O t increase OI decrease O (no change) H,0 3.63 atm Ot increase OI decrease (no change) I decrease (no change) Cl, 1.91 atm ease I decrease (no change) 7,61 atm t increase HCI I decrease O (no change) 7,86 atm O f increase 0, I decrease O (no change) 4.18 atm t increase H,0 I decrease (no change) t increase 2.46 atm Cl, I decrease O (no…arrow_forwardFor the exothermic reaction PCl3(g)+Cl2(g)⇌PCl5(g) Kp = 1.40×10−3 at a certain temperature. A flask is charged with 50.7 kPa PCl3 What are the equilibrium partial pressures of PCl3 , Cl2 , and PCl5 , respectively? , 50.7 kPa Cl2 , and 30.4 kPa PCl5 at this temperature.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY