MATLAB: An Introduction with Applications
6th Edition
ISBN: 9781119256830
Author: Amos Gilat
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Question
For many people, breakfast cereal is an important source of fiber in their diets. Cereals also contain potassium, a mineral shown to be associated with maintaining a healthy blood pressure. An analysis of the amount of fiber (in grams) and the potassium content (in milligrams) in servings of 77 breakfast cereals produced the regression model
Potassium=39+28Fiber.
If your cereal provides
9
grams of fiber per serving, how much potassium does the model estimate you will get?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 1 images
Knowledge Booster
Similar questions
- The table shows a part of an output of a linear regression model predicting the average fare on different flight routes. Data Table Regression Table Coefficient Constant 95.80976147 COUPON −9.61654124 DISTANCE 0.080733811 PAX −0.000167343 What is the difference in prediction of the following two routes? Route A that is 3,000 miles, with COUPON=1.5 and PAX=6,000 Route B that is 3,000 miles, with COUPON=1.2 and PAX=6,000.arrow_forwardThe datasetBody.xlsgives the percent of weight made up of body fat for 100 men as well as other variables such as Age, Weight (lb), Height (in), and circumference (cm) measurements for the Neck, Chest, Abdomen, Ankle, Biceps, and Wrist. We are interested in predicting body fat based on abdomen circumference. Find the equation of the regression line relating to body fat and abdomen circumference. Make a scatter-plot with a regression line. What body fat percent does the line predict for a person with an abdomen circumference of 110 cm? One of the men in the study had an abdomen circumference of 92.4 cm and a body fat of 22.5 percent. Find the residual that corresponds to this observation. Bodyfat Abdomen 32.3 115.6 22.5 92.4 22 86 12.3 85.2 20.5 95.6 22.6 100 28.7 103.1 21.3 89.6 29.9 110.3 21.3 100.5 29.9 100.5 20.4 98.9 16.9 90.3 14.7 83.3 10.8 73.7 26.7 94.9 11.3 86.7 18.1 87.5 8.8 82.8 11.8 83.3 11 83.6 14.9 87 31.9 108.5 17.3…arrow_forwardAfter interviewing salespersons at Harley Davidson dealerships, a researcher has created a linear regression line to explain the relationship between a Harley Davidson motorcycle's age (x) and price (y). The regression has an R² = 87.7%. Write a sentence summarizing what R² says about this regression. The age of the motorcycle explains 12.3% of the variation in price. The age of the motorcycle explains 9.36% of the variation in price. The age of the motorcycle explains 87.7% of the variation in price. The price of the motorcycle explains 12.3% of the variation in age. The price of the motorcycle explains 87.7% of the variation in age.arrow_forward
- The scatterplot below shows the relationship between poverty rate in the 51 states in the US (including DC) and high school graduation rate. The linear for predicting poverty is as follows: poverty = 64.68 -0.62 HS-grad-rate High school graduation rate for North Carolina is 81.4% and the poverty rate is 13.1%. What is the residual for this observation? Choose the closest answer. % in poverty 18 16- 14 12 10 8 6 1.1 O-24.8 24.8 -1.1 80 85 % HS grad 90arrow_forwardPls help ASAP. Pls show all work.arrow_forwardConsumers are often interested in the fuel efficiency of the vehicles they choose to buy, so much so that they will research the various models they consider buying. Fuel efficiency can depend on a variety of variables. In this analysis, there are 73 automobiles that are popular with consumers. A regression analysis has been performed; the dependent variable is CityMPG (EPA miles per gallon in city driving), and independent variables are Length (vehicle length in inches), Width (vehicle width in inches), Weight (vehicle weight in pounds), and ManTran (1 if manual shift transmission, 0 otherwise). The level of significance is 0.05. Use the following MegaStat output to answer questions about this regression analysis. a. State the regression equation. b. How would CityMPG be affected if the width of a vehicle increased by an inch? c. Estimate the CityMPG for a vehicle with a length of 190 inches, a width of 75 inches, a weight of 4100 pounds, and a manual. Round your answer to the nearest…arrow_forward
- For a two-variable linear regression, if the sample correlation between the depen- dent and independent variables is –0.7, then the independent variable explains 49% of the variation in the dependent variable. Is this statement true? Explain your answer.arrow_forwardA logistic regression was used to investigate obesity and poor physical health while controlling for the following variables: age, gender, race, income, health status, education, current smoker, and diet/exercise status. Justify the use of a logistic regression.arrow_forwardUse the Financial database from “Excel Databases.xls” on Blackboard. Use Total Revenues, Total Assets, Return on Equity, Earnings Per Share, Average Yield, and Dividends Per Share to predict the average P/E ratio for a company. Use Excel to develop the multiple linear regression model. Assume a 5% level of significance. Which independent variable is the strongest predictor of the average P/E ratio of a company? A. Total Revenues B. Average Yield C. Earnings Per Share D.Return on Equity E. Total Assets F.Dividends Per Share Company Type Total Revenues Total Assets Return on Equity Earnings per Share Average Yield Dividends per Share Average P/E Ratio AFLAC 6 7251 29454 17.1 2.08 0.9 0.22 11.5 Albertson's 4 14690 5219 21.4 2.08 1.6 0.63 19 Allstate 6 20106 80918 20.1 3.56 1 0.36 10.6 Amerada Hess 7 8340 7935 0.2 0.08 1.1 0.6 698.3 American General 6 3362 80620 7.1 2.19 3 1.4 21.2 American Stores 4 19139 8536 12.2 1.01 1.4 0.34 23.5 Amoco 7 36287…arrow_forward
- Illustrate the importance of using regression models.arrow_forwardExplain what a residual is and how this relates to the best-fit regression model.arrow_forwardwhen a regression is used as a method of predicting dependent variables from one or more independent variables. How are the independent variables different from each other yet related to the dependent variable?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman
MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc
Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning
Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning
Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON
The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman
Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman