College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
thumb_up100%
For an independent study project, you design an experiment to measure the speed of light. You propose to bounce laser light off a mirror that is 54.5 km due east and have it detected by a light sensor that is 115 m due south of the laser. The first problem is to orient the mirror so that the laser light reflects off the mirror and into the light sensor.
(a) Determine the angle that the normal to the mirror should make with respect to due west.
°
(b) Since you can read your protractor only so accurately, the mirror is slightly misaligned and the actual angle between the normal to the mirror and due west exceeds the desired amount by 0.003°. Determine how far south you need to move the light sensor in order to detect the reflected laser light.
m
°
(b) Since you can read your protractor only so accurately, the mirror is slightly misaligned and the actual angle between the normal to the mirror and due west exceeds the desired amount by 0.003°. Determine how far south you need to move the light sensor in order to detect the reflected laser light.
m
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 4 steps with 1 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A room has dimensions 2.71 m (height) × 4.05 m × 6.99 m. A fly starting at one corner flies around, ending up at the diagonally opposite corner. (a) What is the magnitude of its displacement? (b) If the fly walks rather than flies, what is the length of the shortest path it can take? (Hint: This can be answered without calculus. The room is like a box. Unfold its walls to flatten them into a plane.)arrow_forwardWhen a man stands near the edge of an empty drainage ditch of depth 2.80 m, he can barely see the boundary between the opposite wall and bottom of the ditch as in Figure (a) shown below. The distance from his eyes to the ground is h = 1.88 m. (Assume 0 = 27.6°.) IA h d a b Ө m 0 2.80 m (a) What is the horizontal distance d from the man to the edge of the drainage ditch? d = (b) After the drainage ditch is filled with water as in Figure (b) shown above, what is the maximum distance x the man can stand from the edge and still see the same boundary? X = marrow_forwardA camera operator is filming a nature explorer in the Rocky Mountains. The explorer needs to swim across a river to his campsite. By watching debris flowing down the river, the operator estimates that the stream is flowing at 0.625 m/s0.625 m/s . In still water, the explorer can swim at 0.735 m/s0.735 m/s . At what angle, less than 90°, with respect to the shoreline should the operator advise him to swim so that he travels directly across the stream to his campfire The water is near freezing in temperature. Typically a human can only swim in such water for about 300 s300 s (or 5 min5 min ) before hypothermia sets in. Calculate the time the explorer spends in the water if the river is 27.9 m27.9 m wide.arrow_forward
- It’s a sunny Saturday afternoon and you are walking around the lake by your house, enjoying the last few days of summer. The sidewalk surrounding the perimeter of the circular lake is crowded with walkers and runners. You then notice a runner approaching you wearing a T-shirt with writing on it. You read the first two lines, but are unable to read the third line before he passes. You wonder, ”Hmmm, if he continues around the lake, I bet I’ll see him again but I should anticipate the time when we’ll pass again.” You look at your watch and it is 5:07pm. You estimate your walking speed at 3 m/s and the runner’s speed to be about 14 m/s. You also estimate that the diameter of the lake is about 2 miles. At what time should you expect to read the last line of the t-shirt?arrow_forwardIn aviation, it is helpful for pilots to know the cloud ceiling, which is the distance between the ground and lowest cloud. The simplest way to measure this is by using a spotlight to shine a beam of light up at the clouds and measuring the angle between the ground and where the beam hits the clouds. If the spotlight on the ground is 0.75 km from the hangar door as shown in the image below, what is the cloud ceiling? 20° 0.75 kmarrow_forwardA camera operator is filming a nature explorer in the Rocky Mountains. The explorer needs to swim across a river to his campsite. By watching debris flowing down the river, the operator estimates that the stream is flowing at 0.633 m/s. In still water, the explorer can swim at 0.759 m/s. At what angle, less than 90°, with respect to the shoreline should the operator advise him to swim so that he travels directly across the stream to his campfire? angle: 33.389 The water is near freezing in temperature. Typically a human can only swim in such water for about 300 s (or 5 min) before hypothermia sets in. Calculate the time the explorer spends in the water if the river is 28.3 m wide. time in the water: 81.03 S Incorrect Based on the results, what should the camera operator's decision be about the explorer's swim? Approved. He will get cold but he should be able to make it across. Sorry, but the swim must be cancelled. He will never make it across in time.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON