For a short interval of motion, the input gear pivoted at O rotates with a constant angular velocity 4 rad/s in clockwise sense (as shown in figure below). In the position shown, the force applied to the piston is 2F where F = 200 N; The diameter of the gear (G) is 30 cm, link AB is 70 cm and y₁ = 20 cm. a) Draw the vector loop for the given mechanism. b) Find the position of the piston. c) Find the velocity and acceleration of the piston. d) Using energy method, determine the torque T and the power required from the motor to operate the mechanism. e) Find the force in the member (BA). The piston has a mass mp = 0.65 kg. Neglect the mass of other links. All dimensions are in cm. A Y^ "(G) Ут B 2F X Position, Velocity and Acceleration Analysis: Pin-jointed Fourbar linkage VBA 002 R4 -B±√B2-4AC R1 Position Analysis 004 VBA 041,2 A =2arctan 2A cos02-K₁ - K₂cos02 + K3 • B = -2sin02 C K₁ (K2 + 1)cos62 + K3 03,2 = 2 arctan -E±√E2-4DF 2D ⚫D=cose₂-K₁ - K4cos62 + K5 ⚫ E = -2sin02 •F K₁+(K4 - 1)cos02 + K5 K₁₁ = 1 • K₁ = . K₂ 2-b²+c²+d² • K3 = 2ac c2-d²-a²-b2 ⚫ K5 = 2ab PS: if is calculated before you can use one of the equations below to solve for 03 bcos03-acos02 + ccos04+d bsin03=-asino₂ + csin04 aw2 sin(02-03) 004 c sin(04-03) Velocity Analysis as sin(04-0₂) 003 = b sin(03-04) Position Velocity and Acceleration Analysis: Slider-Crank Linkage AB R3 AA R2 R₁ ABA R4 ABA x AB (b) AA A Position analysis 031 = arcsin (asin02 b d = acos02-bcos03 asino2 03: =arcsin +π Velocity analysis a cose₂ d= =-a02 sine₂+b03 sin03 03 -002 b cosey 02 аз Acceleration Analysis aα₂ cosе₂-asin02 +bsin03 bcos03 d=-a2 sine₂-aw cos02 +bα3 sin03 +bwcos03 Acceleration Analysis: Inverted Slider-Crank Linkage R₂ R₁ b dot AAB AAB Corioli X α4= aacos(0-0)+sin(0-0)]+co sin(0,-03)-2003 b+ccos(03-04) amboos(0-0)+ccos(0-0)]+ax[sin(@2-03)-csin(04 −0₂)|| - • 26cm, sin(0, −0,)−m;[b² +c² +2bccos(0,−03)] b+ccos(03-04) " k=2 Energy Equation -,。, FV + 1 = a + k k=2 k=2 k=2

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
pls solving this problem very urgent
For a short interval of motion, the input gear pivoted at O rotates with a constant angular velocity 4
rad/s in clockwise sense (as shown in figure below). In the position shown, the force applied to the piston is
2F where F = 200 N; The diameter of the gear (G) is 30 cm, link AB is 70 cm and y₁ = 20 cm.
a) Draw the vector loop for the given mechanism.
b) Find the position of the piston.
c) Find the velocity and acceleration of the piston.
d) Using energy method, determine the torque T and the power required from the motor to
operate the mechanism.
e) Find the force in the member (BA).
The piston has a mass mp = 0.65 kg. Neglect the mass of other links. All dimensions are in cm.
A
Y^
"(G)
Ут
B
2F
X
Position, Velocity and Acceleration Analysis: Pin-jointed Fourbar linkage
VBA
002
R4
-B±√B2-4AC
R1
Position Analysis
004
VBA
041,2
A
=2arctan
2A
cos02-K₁ - K₂cos02 + K3
• B = -2sin02
C K₁ (K2 + 1)cos62 + K3
03,2
= 2 arctan
-E±√E2-4DF
2D
⚫D=cose₂-K₁ - K4cos62 + K5
⚫ E = -2sin02
•F
K₁+(K4 - 1)cos02 + K5
K₁₁ = 1
•
K₁ =
.
K₂
2-b²+c²+d²
• K3 =
2ac
c2-d²-a²-b2
⚫ K5 =
2ab
PS: if is calculated before you can use one of the equations below to solve for 03
bcos03-acos02 + ccos04+d
bsin03=-asino₂ + csin04
aw2 sin(02-03)
004
c sin(04-03)
Velocity Analysis
as sin(04-0₂)
003
=
b sin(03-04)
Transcribed Image Text:For a short interval of motion, the input gear pivoted at O rotates with a constant angular velocity 4 rad/s in clockwise sense (as shown in figure below). In the position shown, the force applied to the piston is 2F where F = 200 N; The diameter of the gear (G) is 30 cm, link AB is 70 cm and y₁ = 20 cm. a) Draw the vector loop for the given mechanism. b) Find the position of the piston. c) Find the velocity and acceleration of the piston. d) Using energy method, determine the torque T and the power required from the motor to operate the mechanism. e) Find the force in the member (BA). The piston has a mass mp = 0.65 kg. Neglect the mass of other links. All dimensions are in cm. A Y^ "(G) Ут B 2F X Position, Velocity and Acceleration Analysis: Pin-jointed Fourbar linkage VBA 002 R4 -B±√B2-4AC R1 Position Analysis 004 VBA 041,2 A =2arctan 2A cos02-K₁ - K₂cos02 + K3 • B = -2sin02 C K₁ (K2 + 1)cos62 + K3 03,2 = 2 arctan -E±√E2-4DF 2D ⚫D=cose₂-K₁ - K4cos62 + K5 ⚫ E = -2sin02 •F K₁+(K4 - 1)cos02 + K5 K₁₁ = 1 • K₁ = . K₂ 2-b²+c²+d² • K3 = 2ac c2-d²-a²-b2 ⚫ K5 = 2ab PS: if is calculated before you can use one of the equations below to solve for 03 bcos03-acos02 + ccos04+d bsin03=-asino₂ + csin04 aw2 sin(02-03) 004 c sin(04-03) Velocity Analysis as sin(04-0₂) 003 = b sin(03-04)
Position Velocity and Acceleration Analysis: Slider-Crank Linkage
AB
R3
AA
R2
R₁
ABA
R4
ABA
x
AB
(b)
AA
A
Position analysis
031
= arcsin
(asin02
b
d = acos02-bcos03
asino2
03:
=arcsin
+π
Velocity analysis
a cose₂
d=
=-a02 sine₂+b03 sin03
03
-002
b cosey
02
аз
Acceleration Analysis
aα₂ cosе₂-asin02 +bsin03
bcos03
d=-a2 sine₂-aw cos02 +bα3 sin03 +bwcos03
Acceleration Analysis: Inverted Slider-Crank Linkage
R₂
R₁
b dot
AAB
AAB Corioli
X
α4=
aacos(0-0)+sin(0-0)]+co sin(0,-03)-2003
b+ccos(03-04)
amboos(0-0)+ccos(0-0)]+ax[sin(@2-03)-csin(04 −0₂)||
-
• 26cm, sin(0, −0,)−m;[b² +c² +2bccos(0,−03)]
b+ccos(03-04)
"
k=2
Energy Equation
-,。,
FV + 1 = a + k
k=2
k=2
k=2
Transcribed Image Text:Position Velocity and Acceleration Analysis: Slider-Crank Linkage AB R3 AA R2 R₁ ABA R4 ABA x AB (b) AA A Position analysis 031 = arcsin (asin02 b d = acos02-bcos03 asino2 03: =arcsin +π Velocity analysis a cose₂ d= =-a02 sine₂+b03 sin03 03 -002 b cosey 02 аз Acceleration Analysis aα₂ cosе₂-asin02 +bsin03 bcos03 d=-a2 sine₂-aw cos02 +bα3 sin03 +bwcos03 Acceleration Analysis: Inverted Slider-Crank Linkage R₂ R₁ b dot AAB AAB Corioli X α4= aacos(0-0)+sin(0-0)]+co sin(0,-03)-2003 b+ccos(03-04) amboos(0-0)+ccos(0-0)]+ax[sin(@2-03)-csin(04 −0₂)|| - • 26cm, sin(0, −0,)−m;[b² +c² +2bccos(0,−03)] b+ccos(03-04) " k=2 Energy Equation -,。, FV + 1 = a + k k=2 k=2 k=2
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY