College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Topic Video
Question
For a fixed initial speed, the range of a projectile is determined by the angle at which it is fired. For all but the maximum, there are two angles that give the same range. Considering factors that might affect the ability of an archer to hit a target, such as wind, explain why the smaller angle (closer to the horizontal) is preferable. When would it be necessary for the archer to use the
larger angle? Why does the punter in a football game use the higher trajectory?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A horizontal rifle is fired at a bull's-eye. The muzzle speed of the bullet is 650 m/s. The gun is pointed directly at the center of the bull's- eye, but the bullet strikes the target 0.029 m below the center. What is the horizontal distance between the end of the rifle and the bull's-eye? Number i eTextbook and Media Units #arrow_forwardBelow is an image of a cannon firing a projectile with an initial horizontal velocity. The location of the projectile at four points along its path are shown. Ignore air resistance. What can you say about the horizontal velocity of the object?arrow_forwardThe citizens of Paris were terrified during World War I when they were suddenly bombarded with shells fired from a long-range gun known as Big Bertha. The barrel of the gun was 36.6 m long, and it had a muzzle speed of 2.20 km/s. When the gun’s angle of elevation was set to 55.0°, what would be the range? For the purposes of solving this problem, ignore air resistance. (The actual range at this elevation was 121 km; air resistance cannot be ignored for the high muzzle speed of the shells.) kmarrow_forward
- Make a prediction regarding what launch angle will produce the maximum horizontal range for a projectile launched from level ground and landing back on level ground. Provide reasoning to support your hypothesis.arrow_forwardA projectile is fired with initial speed 150 m/s and an angle of elevation 45° from a position 10 m above ground level. Where does the projectile hit the ground and with what speed? Solution If we place the origin at ground level, then the initial position of the projectile is (0, 10) and so we need to adjust the parametric equations of the trajectory by adding 10 to the expression for y. With v0 = 150 m/s, ? = 45°, and g = 9.8 m/s2, we have x = 150 cos ? 4 t = y = 10 + 150 sin ? 4 t − 1 2 (9.8)t2 = . Impact occurs when y = 0, that is 4.9t2 − 75 2 t − 10 = 0. Solving this quadratic equation (and using only the positive value of t), we get the following. (Round your answer to two decimal places.) t = 75 2 + 11,250 + 196 9.8 ≈ Then x ≈ 75 2 (21.74) ≈ (rounded to the nearest whole number), so the projectile hits the ground about…arrow_forwardHow do you solve this? I've got 2/3 so fararrow_forward
- Lesson: Projectiles If two projectiles have the same size and shape but one is heavier than the other, which will travel further horizontally if they are both launched at the same angle and speed? O The heavy one O They will both be the same O The light one O Not enough information to tellarrow_forwardUse a graphing utility to obtain the path of a projectile launched from the ground (h = 0) at the specified values of θ = 35°, v0 = 300 feet per second. In the exercise, use the graph to determine the maximum height and the time at which the projectile reaches its maximum height. Also use the graph to determine the range of the projectile and the time it hits the ground. Round all answers to the nearest tenth.arrow_forwardDon't Use Chat GPT Will Upvotearrow_forward
- 3. Consider a ball undergoing a 2D projectile motion, whose position (unit: m) as a function of time (unit: s) is 3(t) = tî + (V3t – 5t²)ĵ, where t stands for time. (a) Find the initial launch angle of the projection. (b) Find the speed of the ball when it lands on the ground.arrow_forwardA golfer has a choice of hitting a ball at 51° or at 38°. For maximum distance, which should the golfer choose? Ignore air resistancearrow_forwardA soccer ball is kicked with an initial horizontal velocity of 18 m/s and an initial vertical velocity of 13 m/s. 1) What is the initial speed of the ball? 2) What is the initial angle ? of the ball with respect to the ground? 3) What is the maximum height the ball goes above the ground? 4) How far from where it was kicked will the ball land?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON