Find the volume of the parallelepiped determined by the vectors a = (5, 2, −1), b = (0, 1, 2), c = (2, 4, 1). Volume - cubic-units

Algebra & Trigonometry with Analytic Geometry
13th Edition
ISBN:9781133382119
Author:Swokowski
Publisher:Swokowski
Chapter9: Systems Of Equations And Inequalities
Section: Chapter Questions
Problem 39RE
icon
Related questions
Question
100%
**Problem Statement**

Find the volume of the parallelepiped determined by the vectors \( \vec{a} = \langle 5, 2, -1 \rangle \), \( \vec{b} = \langle 0, 1, 2 \rangle \), and \( \vec{c} = \langle 2, 4, 1 \rangle \).

**Solution**

To find the volume of the parallelepiped, we will use the scalar triple product.

The volume \(V\) is given by:
\[ V = |\vec{a} \cdot (\vec{b} \times \vec{c})| \]

**Vectors Provided:**
- \( \vec{a} = \langle 5, 2, -1 \rangle \)
- \( \vec{b} = \langle 0, 1, 2 \rangle \)
- \( \vec{c} = \langle 2, 4, 1 \rangle \)

The vector cross product \( \vec{b} \times \vec{c} \) results in another vector:
\[ \vec{b} \times \vec{c} = 
\begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
0 & 1 & 2 \\
2 & 4 & 1
\end{vmatrix}
= \mathbf{i}(1 \cdot 1 - 2 \cdot 4) - \mathbf{j}(0 \cdot 1 - 2 \cdot 2) + \mathbf{k}(0 \cdot 4 - 1 \cdot 2) \]

Simplify the determinant:
\[ \vec{b} \times \vec{c} = \mathbf{i}(1 - 8) - \mathbf{j}(0 - 4) + \mathbf{k}(0 - 2) \]
\[ \vec{b} \times \vec{c} = \mathbf{i}(-7) - \mathbf{j}(-4) + \mathbf{k}(-2) \]
\[ \vec{b} \times \vec{c} = \langle -7, 4, -2 \rangle \]

Now, compute the dot product \(\vec{a
Transcribed Image Text:**Problem Statement** Find the volume of the parallelepiped determined by the vectors \( \vec{a} = \langle 5, 2, -1 \rangle \), \( \vec{b} = \langle 0, 1, 2 \rangle \), and \( \vec{c} = \langle 2, 4, 1 \rangle \). **Solution** To find the volume of the parallelepiped, we will use the scalar triple product. The volume \(V\) is given by: \[ V = |\vec{a} \cdot (\vec{b} \times \vec{c})| \] **Vectors Provided:** - \( \vec{a} = \langle 5, 2, -1 \rangle \) - \( \vec{b} = \langle 0, 1, 2 \rangle \) - \( \vec{c} = \langle 2, 4, 1 \rangle \) The vector cross product \( \vec{b} \times \vec{c} \) results in another vector: \[ \vec{b} \times \vec{c} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 1 & 2 \\ 2 & 4 & 1 \end{vmatrix} = \mathbf{i}(1 \cdot 1 - 2 \cdot 4) - \mathbf{j}(0 \cdot 1 - 2 \cdot 2) + \mathbf{k}(0 \cdot 4 - 1 \cdot 2) \] Simplify the determinant: \[ \vec{b} \times \vec{c} = \mathbf{i}(1 - 8) - \mathbf{j}(0 - 4) + \mathbf{k}(0 - 2) \] \[ \vec{b} \times \vec{c} = \mathbf{i}(-7) - \mathbf{j}(-4) + \mathbf{k}(-2) \] \[ \vec{b} \times \vec{c} = \langle -7, 4, -2 \rangle \] Now, compute the dot product \(\vec{a
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Algebra & Trigonometry with Analytic Geometry
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage